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Take-Home Message
Proposal:

• Few-shot parameter-efficient fine-tuning (FSEFT), a novel and realistic setting for adapt-
ing volumetric foundation models on clinical scenarios.

• Using spatial adapter modules, tailored for medical image segmentation, and a transdac-
tive inference to leverage priors during adaptation.

Results:

• In the few-shot regime, standard finetuning exhibits performance drops.
• The potential of foundation models: only 5-shots and classifier adapters outperform train-

ing from scratch on the whole dataset.
• Our solution provides better performance while updating 300× less parameters.

Introduction
• Context: Foundation models for volumetric medical images [1].

– Capture rich features pre-trained on large, heterogeneous sources.
– Promising transferability to downstream datasets/tasks.
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• Motivation: The real-world clinical scenario:

– Scarce data and annotation resources.
– Limited computation power.

• Background: Standard adaptation methods such as fine-tuning (FT)
fail in this scenario.

Setting Methods Avg. DSC

10-shot
FT 0.527
FT-last 0.763
Linear Probe [2] 0.777

• Contribution:

– We formalize few-shot efficient fine-tuning (FSEFT), a novel and
realistic setting for medical image segmentation.

– We design spatial adapter modules that are more appropriate for
dense predictions.

– We introduce a constrained transductive inference, which leverages
task-specific prior knowledge.

– The proposed framework approaches full supervision while requir-
ing significantly fewer annotated samples

Method
• Foundation Model: We use an assembly dataset of volumetric data

DT = {(Xn, Yn, wn)}N
n=1, composed by pre-processed volumes, pixel-

level partial annotations, and task masks, respectively. Also, let us define
a segmentation model, θ = {θf (·), θc(·)}, which is composed of a feature
extraction neural network and a classification head, such that, Ŷn =
σ(θ(Xn)). The pre-training of a foundation model consists of optimizing
any segmentation loss for each k task under:

min
θf ,θc

1∑
k wn,k

∑
k

wn,kLSEG(Yn,k, Ŷn,k), n = 1, ..., N (1)

• Parameter-Efficient Few-shot Adapters: During adaptation, we
replace the classification head with an adapter module, ϕ. This mod-
ule produces voxel-level sigmoid scores for the query sample and few
support, annotated examples: ∀x ∈ X, Ŷ (x) = σ(ϕ(θf (x))) and ∀x ∈
Xk, Ŷk(x) = σ(ϕ(θf (x))), k ∈ 1, . . . K.

• Transductive Inference: Anatomical priors - in the form of organ size,
S = 1

K

∑
k

∑
x∈Ω Yk(x), are incorporated during inference to enhance

the consistency on the query sample prediction.

LT I =


|Ŝ − (1 − γ)S|, if Ŝ < (1 − γ)S
|Ŝ − (1 + γ)S|, if Ŝ > (1 + γ)S
0, otherwise

(2)

Adaptation stage:

min
ϕ

LSEG(Yk, Ŷk) + λLT I(S, Ŝquery), k = 1, ..., K (3)
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• Repository: https://github.com/jusiro/fewshot-finetuning

Results
(1) Quantitative performance:

Methods Avg. DSC
1-shot 5-shot 10-shot All

Scratch - - - 0.688
FT 0.276 0.493 0.527 0.789
FT-last 0.488 0.735 0.763 0.777
Linear Probe [2] 0.657 0.720 0.765 0.771
Adapter (Ours) 0.654 0.748 0.777 0.781
Adapter + TI (Ours) 0.663 0.759 0.783 -

(2) Qualitative results:

GT Linear Probe Spatial Adapter TISpatial Adapter  
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