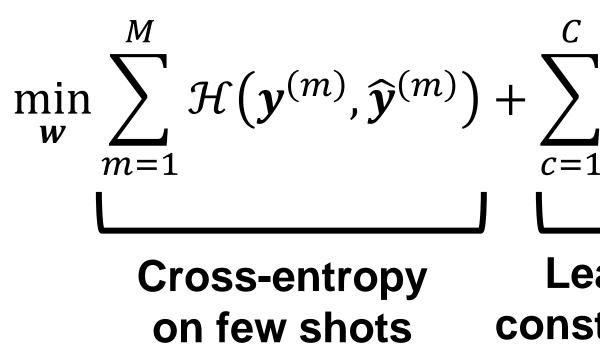


VLMs Adaptation

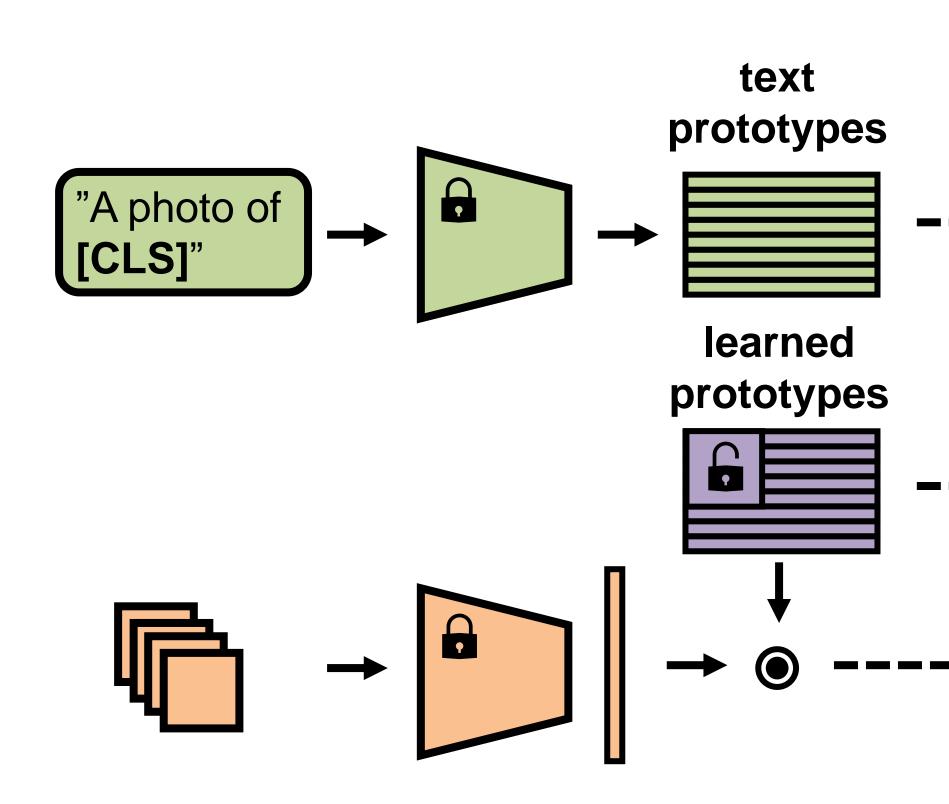
- VLMs. present robust zero-shot performance
- Few-shot Adapters enhance the transferability combining visual and text information.

Pitfalls on Existing Few-Shot Adapters

CLIP-Adapter vs. (ZS) Linear Probe


ImN Cal OPeSCa Flw Foo FGVSUNDTDEuSUCF

-20-1.1-2.3-0.4 -0 0.4 0.4


A Closer Look at the Few-Shot Adaptation of Large Vision-Language Models ÉTS Montreal Julio Silva-Rodríguez - Sina Hajimiri - Ismail Ben Ayed - Jose Dolz

Our Few-Shot Adapter: CLAP

- \succ We propose a novel and simple approach that meets challenges of real-world scenarios: **not requiring hyper-parameter tuning**.
- > We introduce CLass-Adaptive linear Probe (CLAP), a linear classifier with prototypes constrained to remain close to the initial, robust zero-shot prototypes.

 \succ For each class, λ_c is fixed using zero-shot performance on support samples. Thus, better performance \rightarrow larger λ_c .

SoTA Adapters Comparisons

$$\lambda_c || \boldsymbol{t}_c - \boldsymbol{w}_c ||_2^2$$

Learned prototypes constrained to zero-shot

$$\sum_{c=1}^{C} \lambda_c || \boldsymbol{t}_c - \boldsymbol{w}_c ||_2^2$$

$$\blacktriangleright \sum_{m=1}^{M} \mathcal{H}(\mathbf{y}^{(m)}, \widehat{\mathbf{y}}^{(m)})$$

V	a	d

Method	<i>K</i> =1	K=2	K=4	K=8	<i>K</i> =16	
Prompt-learning methods						
CoOp _{IJCV'22} [46]	59.56	61.78	66.47	69.85	73.33	
ProGrad ICCV'23[13]	62.61	64.90	68.45	71.41	74.28	
PLOT ICLR'23[6]	62.59	65.23	68.60	71.23	73.94	
Efficient transfer learning - a.k.a Adapters						
Zero-Shot _{ICML'21} [30]	57.71	57.71	57.71	57.71	57.71	
Rand. Init LP ICML'21[30]	30.42	41.86	51.69	60.84	67.54	
CLIP-Adapter _{IJCV'23} [11]	58.43	62.46	66.18	69.87	73.35	
TIP-Adapter _{ECCV'22} [42]	58.86	60.33	61.49	63.15	64.61	
TIP-Adapter(f) ECCV'22[42]	60.29	62.26	65.32	68.35	71.40	
CrossModal-LP CVPR'23[24]	62.24	64.48	66.67	70.36	73.65	
TaskRes(e) CVPR'23[40]	61.44	65.26	68.35	71.66	74.42	
ZS-LP	61.28	64.88	67.98	71.43	74.37	
CLAP	62.79	66.07	69.13	72.08	74.57	

Method	K=1	K=2	K=4	K = 8	K = 16			
Protocol in [24]: K-shots for train + $min(K, 4)$ for validation								
TIP-Adapter [42] CrossModal LP [24] CrossModal Adapter [24] CrossModal PartialFT [24]	63.3 64.1 64.4 64.7	65.9 67.0 67.6 67.2	69.0 70.3 70.8 70.5	72.2 73.0 73.4 73.6	75.1 76.0 75.9 77.1			
Ours: using $K + min(K, 4)$ shots for trainingZS-LP64.968.071.473.175.0GL + D64.968.071.473.175.0								
CLAP	66.1	69.1	72.1	73.5	75.1			

Conclusions

- Few-shot
- > CLAP is largely competitive and does not require ad-hoc adjustments per dataset.

dation-free comparison

Using a few-shot validation set

adapters should include model selection strategies based on support data.

