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Proposed method:

~ Introduction

e Motivation: o

We show that the underlying cause of miscalibration in adaptation is with the increase of
logit ranges and demonstrated that the zero-shot baselines are better calibrated.

We provide two solutions (normalization, penalty) during training and an unsupervised
scaling during inference time to constrain the logit range based on the zero-shot logits.
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Results:

Our solutions reduce miscal
learning while keeping the discriminative performance.

both adapters and prompt
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ibration error in popular OOD classification benchmarks for

e Incorporating our approaches decreases the logit range with typical increase in logit norm.

~ Method

— Deep learning is undergoing a paradigm shift with pre-trained
large-scale language-vision models, such as CLIP [1].

— Adapters |2], Prompt Learning [3], and TPT [4] methods have
been developed to generalize for unseen related-domains.

— These methods have improved the discriminative performance
of a zero-shot baseline, but calibration is significantly degraded.

e Background and observations:

— Recent literature |5| suggests that the miscalibration is caused
by increasing the logit norm during training.

— We expose that the underlying cause of miscalibration is, in
fact, the increase of the logit ranges instead of norm.
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e Contributions:

— We empirically demonstrate that popular CLIP adaptation
strategies, substantially degrade the calibration capabilities of
the zero-shot baseline in the presence of distributional drift.

— We present a simple, and model-agnostic solution, scaling the
logit range of each sample based on the zero-shot logits.

— Comprehensive experiments on popular OOD classification
benchmarks demonstrate the effectiveness of our approaches.

The logits used in training the main objective H(Y , P) are con-
strained to the range of its zero-shot prediction by the following
constrained problem:

minimize H(Y, P)
subject to liZS'minl <[, < lizs'maxl Vi e D
where [; is the logit magnitude of sample x;, and liZS‘mirl and Z?S‘max

are the min and max logit magnitudes of its zero-shot prediction.

Sample-adaptive logit scaling (SaLS)

The logit normalization of sample @; at inference time is given by:
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where ['2X — ma,Xj (l’L]) and lmin p— mlnj (lz])

Zero-shot logit normalization during training (ZS-Norm)

The learning objective with normalized logit (1)) is given by:

H(Y, P) = —> >ﬂyzk log

Z] 1 CXp (lf/Lj)

where [ denotes the zero-shot normalized logit vector of x;

Integrating explicit constraints in the objective (Penalty)

The objective function with ReLLU penalties is given by:

K

min

1€S k=1

where A\ controls the trade-ofl between the main loss and penalties.

Repository : https://github.com/Bala93/CLIPCalib
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© Results

(1) Quantitative performance:
proved calibration on different prompt learning methods.

Logit range scaling provided im-

Method Avg. OOD

ACC ECE

Zero-Shot 57.15 4.78

CoOp 58.41 6.61
W/ ZS-Norm 5875(4_034)/[\ 4'35(—2.26)\1/
W/ Penalty 59°18(—|—O.77)T 4.91(_1.70)\1/

CoCoOp 59.74 4.83
W/ ZS-Norm 59°90(—|—0.16)T 3'94(—0.89)\L
W/ Penalty 60.20 (—|—O.46)T 3.89 (_0094)\L

MaPLe 60.07 4.13
W/ ZS-Norm 60.09(4_0.02)/]\ 3.59(_0.14)\1/
W/ Penalty 60.62 (—I—O.55)T 3.78 (_0.35)\1,

(2) Qualitative results: Reliability plot for Prompt learning
method CoOp with ImageNetV2 (Top), and ImageNetSketch (Bottom).
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