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Take-Home Message
Proposed method:

• We extend NACL, a spatial aware segmentation calibration to introduce a region and
class wise penalty term, contrasting with NACL which uses a uniform scalar.

• We develop Augmented Lagrangian method (ALM) based solution to obtain the optimal
penalty weights instead of empirically finding each one.

Results:

• Our solution provides better segmentation and calibration metrics across benchmarks.
• Our method follows the logit distribution specific to the difficulty of class and region.
• Our method is stable compared to NACL and agnostic to segmentation backbones.

Introduction
• Motivation: Deep learning models are poorly calibrated [1].

– They assign high confidence to incorrect predictions.
– Inaccurate uncertainty estimates can have severe consequences.
– High capacity models overfit with the cross entropy loss.

• Related works: Model uncertainty can be improved by introducing
specialized objective functions [2][3].

– SVLS [4] proposed a soft labeling technique that used a Gaussian
filter smoothed label to capture the spatial uncertainty.

– Neighbor Aware CaLibration (NACL) [5] provided an alternative
to SVLS with a simple linear penalty.

• Limitations: NACL employs a single uniform penalty disregarding dif-
ferences across individual categories, and different regions.

• Contribution:

– We propose a solution that considers the specificities of each cat-
egory and different regions by introducing independent class and
region-wise penalty weights.

– We find the optimal values of penalties using an Augmented La-
grangian method (ALM).

– Comprehensive experiments on popular segmentation benchmarks
(ACDC, FLARE) and backbones (UNet, nnUNet) demonstrate the
superiority of our approach.

Method
• Preliminaries:

For a K class segmentation task, let s be the softmax prediction, y be
the ground truth, and Ω be the spatial image domain.
NACL minimizes the cross entropy while constraining the logits (l) based
on the spatial prior (τ ) by the constrained optimization problem below:
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Let us consider the penalty weight for each class in the Inner (I) and
Outer (O) regions, where I is the surrounding ground truth patch of a
given pixel that contains only one category, and O the patch that has
more than one category (typically along the boundaries). The new loss
can be then formally defined as:
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Finding k × 2 optimal λ values manually poses optimization challenges.

• Solution:
ALM approaches are optimization techniques that integrate penalties
and primal-dual updates to efficiently tackle constrained optimization
problems. We use ALM to find the balancing weights (Lagrange multi-
pliers) by reformulating the loss function presented above as:
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Algorithm
• Penalty function P is parameterized by (ρ, λ) which are obtained on the

validation set after a single training epoch approximately minimizes the
target loss function.

• The overall algorithm to simultaneously optimize the cross entropy loss
with class and region aware penalty constraints is given below:

Algorithm 1 Augmented Lagrangian Multiplier
1: for j = 0, . . . , T do
2: Optimize for θ in the inner loop

3: for each mini-batch {(x(i), y(i))}B
i=1 in Dtrain do

4: Lc = H(y(i), s(i)) {Cross-entropy}
5: LI
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7: L = 1
B (Lc + LI

p + LO
p ) {Total loss}

8: θ(t+1) ← θ(t) − α · ∇θL {Adjust θ by gradient descent}
9: end for

10: Optimize for λ and ρ in the outer loop
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14: else
15: ρ
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16: end if
17: end for

Repository: https://github.com/Bala93/MarginLoss

Results
(1) Quantitative performance: Our method consistently yields the
best compromise between segmentation and calibration metrics.

ACDC FLARE

DSC HD ECE TACE DSC HD ECE TACE

FL 0.620 7.30 0.153 0.224 0.834 6.65 0.053 0.145
ECP 0.782 4.44 0.130 0.151 0.860 5.30 0.037 0.134
LS 0.809 3.30 0.083 0.093 0.860 5.33 0.055 0.050
SVLS 0.824 2.81 0.091 0.138 0.857 5.72 0.039 0.144
MbLS 0.827 2.99 0.103 0.081 0.836 5.75 0.046 0.041
NACL 0.854 2.93 0.068 0.073 0.868 5.12 0.033 0.031
BWCR 0.841 2.69 0.051 0.075 0.848 5.39 0.029 0.059
Ours 0.877 1.72 0.057 0.058 0.876 5.52 0.029 0.033

(2) Benefits compared to NACL: Performance of NACL significantly
varies with the value of its penalty weight.

(3) Logit Magnitudes: Our approach provides desirable logit distribu-
tion without hyper-parameter optimization as that of NACL.
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