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An Tang

Medical Vision-Language Models (VLMs)

VLMs like CLIP have seen success in natural image recognition, integrating image and
text data to learn rich transferable representations.

Nevertheless, medical VLMs adaptation remains challenging:

= Tackling low-prevalence diseases makes standard data-demanding strategies imprac-

tical

in clinical scenarios.

= High computational cost of full model fine-tuning on large-scale foundation models.
= Privacy concerns of sharing foundation models pre-trained with proprietary data.

Solution: i) few-shot learning and ii) black-box adaptation.

Contributions

= We introduce the first structured benchmark for the few-shot adaptation of medical
VLMs.

= \We provide adaptation experiments on 3 medical modalities, i.e. radiology, histology,
and ophthalmology, with 3 specialized foundation models and 9 tasks.

= We benchmark Prompt Learning and Adapter-based strategies.

* We propose a generalized linear probe (LP+text) that blends visual prototypes and
text embeddings with learnable multipliers.

Method

= Linear probe (LP): Fine-tunes only the linear-classifier weights while keeping the
other model’s parameters frozen.
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= Text-driven linear probe (LP+text) [9]: Blends the visual prototypes with the text
embeddings using learnable class-wise multipliers.
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Deployment on open-access foundation models

Pre-trained Medical Vision-Language Models: Quilt-1M (histology) [1], FLAIR (ophthal-
mology) [2], and MedCLIP (X-rays) [3].
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W: visual class prototypes
T, text class prototypes
G blend?ng parameter

K: number of classes
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Few-shot adaptation results

We evaluate the models in a range of few-shot scenarios, with S =1, 2, 4, 8, 16 shots
per class, to simulate low-data regimes in realistic clinical settings.
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Comparison of different adaptation methods over 9 benchmarks and 3 medical VLMs, each from a
different clinical domain (Histology, Ophthalmology and Radiology).

Efficiency: speed and hardware requirements

LP+text uses significantly less GPU memory (~

800MB vs. 28GB for Prompt Learning).

Computational Efficiency. Experiments on a NVIDIA RTX A6000 GPU on NCT-CRC. D; = 256, and

Dy = D = 512. Number of context tokens for CoOp and KgCoOp: ne1 = 16; for CoCoOp: nggee = 4.
Methods Category Training Time Black-box #Parameters
Zero-shot n/a v n/a
CoOp [4] 3min X K X nggy1 X D
CoCoOp [5] Prompt-Learning 12min X Netga X D + C
KgCoOp [6] 3min X K X negg1 X D
Clip-Adapter [7] ) 2min v 2(Dy x Dy)
Tip-adapter-F [8] CLIP-based Adapters 2min v KxS8xD
LP Linear probe 43s v KxD
LP+text [9] P 4s v K(D+1)

Conclusions

= \We introduced the first structured benchmark for few-shot adaptation of medical
VLMs across different modalities.

* The text-informed linear probe (LP+text) offers a computationally efficient and
black-box-friendly solution, providing competitive performance compared to more
complex methods like Prompt Learning and Adapter-based strategies.

= The LP+text method reduces hardware requirements, making it practical for low-
resource settings such as smaller clinical institutions with limited computational
power. This makes it a favorable approach in real-world healthcare environments.
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Code is available Here! :)




