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Motivation

Medical Vision-Language Models (VLMs)

VLMs like CLIP have seen success in natural image recognition, integrating image and

text data to learn rich transferable representations.

Nevertheless, medical VLMs adaptation remains challenging:

Tackling low-prevalence diseases makes standard data-demanding strategies imprac-

tical in clinical scenarios.

High computational cost of full model fine-tuning on large-scale foundation models.

Privacy concerns of sharing foundation models pre-trained with proprietary data.

Solution: i) few-shot learning and ii) black-box adaptation.

Contributions

We introduce the first structured benchmark for the few-shot adaptation of medical

VLMs.

We provide adaptation experiments on 3 medical modalities, i.e. radiology, histology,

and ophthalmology, with 3 specialized foundation models and 9 tasks.

We benchmark Prompt Learning and Adapter-based strategies.

We propose a generalized linear probe (LP+text) that blends visual prototypes and

text embeddings with learnable multipliers.

Method

Linear probe (LP): Fine-tunes only the linear-classifier weights while keeping the

other model’s parameters frozen.
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Text-driven linear probe (LP+text) [9]: Blends the visual prototypes with the text

embeddings using learnable class-wise multipliers.
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Deployment on open-access foundation models

Pre-trained Medical Vision-Language Models: Quilt-1M (histology) [1], FLAIR (ophthal-

mology) [2], and MedCLIP (X-rays) [3].
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Few-shot adaptation results

We evaluate the models in a range of few-shot scenarios, with S = 1, 2, 4, 8, 16 shots

per class, to simulate low-data regimes in realistic clinical settings.

Comparison of different adaptation methods over 9 benchmarks and 3 medical VLMs, each from a

different clinical domain (Histology, Ophthalmology and Radiology).

Efficiency: speed and hardware requirements

LP+text uses significantly less GPU memory (' 800MB vs. 28GB for Prompt Learning).

Computational Efficiency. Experiments on a NVIDIA RTX A6000 GPU on NCT-CRC. D1 = 256, and
D2 = D = 512. Number of context tokens for CoOp and KgCoOp: nctx1 = 16; for CoCoOp: nctx2 = 4.

Methods Category Training Time Black-box #Parameters

Zero-shot n/a X n/a

CoOp [4]

Prompt-Learning

3min 7 K × nctx1 × D
CoCoOp [5] 12min 7 nctx2 × D + C
KgCoOp [6] 3min 7 K × nctx1 × D

Clip-Adapter [7]
CLIP-based Adapters

2min X 2(D1 × D2)
Tip-adapter-F [8] 2min X K × S × D

LP
Linear probe

43s X K × D
LP+text [9] 4s X K(D + 1)

Conclusions

We introduced the first structured benchmark for few-shot adaptation of medical

VLMs across different modalities.

The text-informed linear probe (LP+text) offers a computationally efficient and

black-box-friendly solution, providing competitive performance compared to more

complex methods like Prompt Learning and Adapter-based strategies.

The LP+text method reduces hardware requirements, making it practical for low-

resource settings such as smaller clinical institutions with limited computational

power. This makes it a favorable approach in real-world healthcare environments.

Feel free to use it!


