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Large Vision-Language Models
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➢ CLIP pre-training ➢ Few-shot adaptation
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➢ Zero-shot inference
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( Linear Probing)



Vision-Language Adapters
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Revisiting Linear Probing
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➢ The initial approximation of Linear Probing for CLIP offers limited performance.

A well-initialized Linear 

Probe is all you need?

➢ Zero-Shot Linear Probe (ZS-LP):

✓ Pre-training head design.

✓ Zero-shot weights initialization.



➢ The strength of text prototypes varies on the difficulty 

of each target dataset, and the modality gap with respect 

to pre-training data.

➢ Prior works combine zero-shot and few-shot 

knowledge by using blending hyperparameters that 

control how far they go from the initial solution. 

➢ How do you find the best balance per dataset?

Pitfalls on Existing Few-Shot Adapters
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CLIP-Adapter
∆𝐴𝐶𝐶 over ZS-LP 

Optimum 

hyper-param. Evaluated on

SoTA Adapters require 

validation data to outperform 

a Linear Probe

𝒘 = 𝒕 ; 𝒗′ = 𝒗 + 𝛼𝑟 𝑓𝜑 𝒗

CLIP-Adapter



Our Proposal: CLAP
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➢ CLass-Adaptive linear Probing aims to train class protoypes, 𝒘𝑐, constraining them to remain 

close to text prototypes, 𝒕𝑐. To do so, we employ a penalty-based constraints.

➢ Since each category might present different zero-shot robustness and particular difficulty, we 

employ weighting factor per class, 𝝀𝒄.

min
𝒘
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𝑀
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2

Cross-entropy on

few shots

Learned prototypes

constrained to zero-shot

➢ The penalty weights are treated as a learnable parameters via 

Augmented Lagrangian Multipliers (ALM). 
𝜆𝑐
∗ =

1

|𝛽𝑐
+|


𝑖𝜖𝛽𝑐
+
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Quantitative Evaluation
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Validation-free comparison

Using a few-shot validation set



➢ Linear Probing (if properly designed) is a strong baseline for few-shot CLIP Adaptation.

➢ Few-shot  adapters should include model selection strategies based on support data.

➢ CLAP is largely competitive and does not require ad-hoc adjustments per dataset.

Take-Home Messages
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Know more

jusiro/CLAP
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