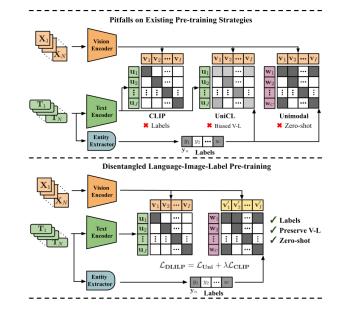


A Reality Check of Vision-Language Pre-training in Radiology: Have We Progressed Using Text?

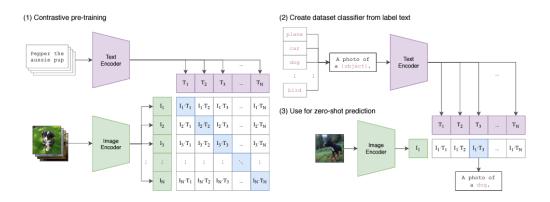
Julio Silva-Rodríguez, Jose Dolz and Ismail Ben Ayed ÉTS Montréal



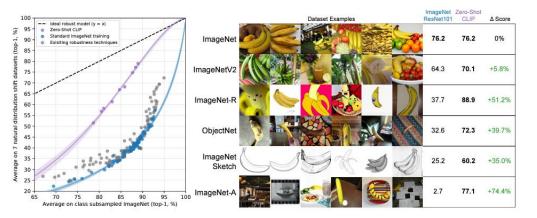
Vision-Language Foundation Models

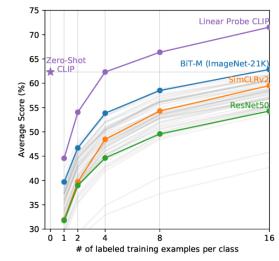
Learning Transferable Visual Models From Natural Language Supervision

Alec Radford^{*1} Jong Wook Kim^{*1} Chris Hallacy¹ Aditya Ramesh¹ Gabriel Goh¹ Sandhini Agarwal¹ Girish Sastry¹ Amanda Askell¹ Pamela Mishkin¹ Jack Clark¹ Gretchen Krueger¹ Ilya Sutskever¹



400M image-text pairs





Vision-Language Pre-training in Radiology

There is a large core of literature for Chest X-ray (CXR) image understanding driven by the text report, driven by MIMIC dataset + labels in CheXpert and MIMIC extracted by NLP methods.

Table 1: Frontal Chest X-ray datasets assembly. We compiled open-access datasets for training and evaluation. Green-colored categories indicate novel classes not explicitly used during CheXpert and MIMIC pre-training.

Pre-train	#Images	Reports	#Labels	Categories
CheXpert (C) [13]	191,026		14	[NoF, EnlCard, Card, LuLes, LuOp, Edema, Cons,
MIMIC (M) [16]	154,595	×	14	PnMo, Atel, PnThor, PleEffu, PleOth, Fract, Dev]
PadChest [*] (P) [3]	96,201		84	(see Supp. Materials)

CONVIRT (MLHC20)

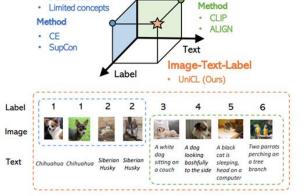
- GlorIA (ICCV21)
- □ MedCLIP (EMNLP 22)
- □ CheXZerp (NatureBioEng22)
- □ BioVIL (ECCV22)

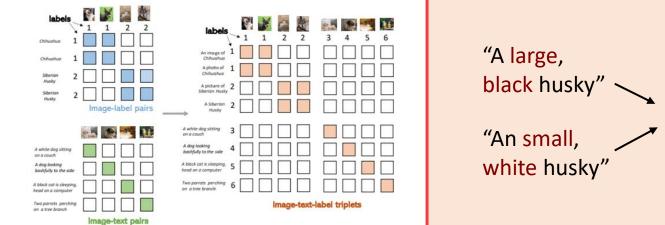
- GCA (NeurIPS22)
- MedKLIP (ICCV23)
- CXR-CLIP (MICCAI23)
- □ KAD (NatureCom23)
- **SAT (TMI23)**

Sentences	Text Labels
1. Hazy widespread opacity which could be compatible with a coinciding pneumonia.	1. [Lung Opacity]
2. Pulmonary nodules in the left upper lobe are also not completely characterized on this study.	2. [Lung Lesion]
1. With exception of mild bibasilar at electasis, the lungs are normally expanded without focal opacity to suggest	1. [Atelectasis]
pneumonia. 2. Heart size is mildly enlarged. 3. There is no pleural effusion or pneumothorax	 [Cardiomelagy] [No Findings]

Image-Text-Label Alignment

Image-Text 2 84 labels Image-Label ▲ Image Unique label 1 1 2 2 Rich semantics Dense label labe





UniCL: Unified Contrastive Learning in Image-Text-Label Space (CVPR22)

CLIP Loss

$$\mathcal{L}_{\text{CLIP}}^{\text{i2t}}(\theta, \phi, \tau | \mathcal{B}) = -\sum_{i \in \mathcal{B}} \log \frac{\exp(\mathbf{v}_i^T \mathbf{u}_i / \tau)}{\sum_{j \in \mathcal{B}} \exp(\mathbf{v}_i^T \mathbf{u}_j / \tau))}$$

$$\mathcal{L}_{\text{CLIP}}^{\text{t2i}}(\theta, \phi, \tau | \mathcal{B}) = -\sum_{j \in \mathcal{B}} \log \frac{\exp(\mathbf{v}_j^T \mathbf{u}_j / \tau)}{\sum_{i \in \mathcal{B}} \exp(\mathbf{v}_i^T \mathbf{u}_j / \tau))}$$

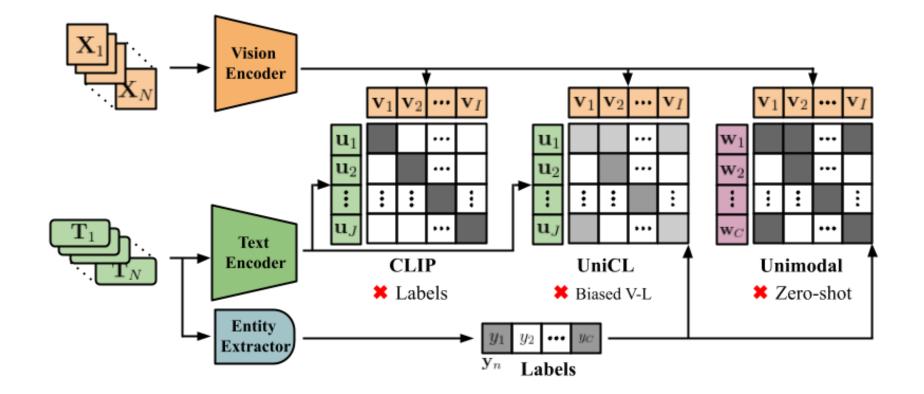
UniCL Loss

$$\mathcal{L}_{\text{UniCL}}^{\text{i2t}}(\theta, \phi, \tau | \mathcal{B}) = -\sum_{i \in \mathcal{B}} \frac{1}{|P_{\text{i2t}}(i)|} \sum_{i' \in P_{\text{i2t}}(i)} \log \frac{\exp(\mathbf{u}_i^T \mathbf{v}_{i'} / \tau)}{\sum_{j \in \mathcal{T}_B} \exp(\mathbf{u}_i^T \mathbf{v}_j / \tau)}$$

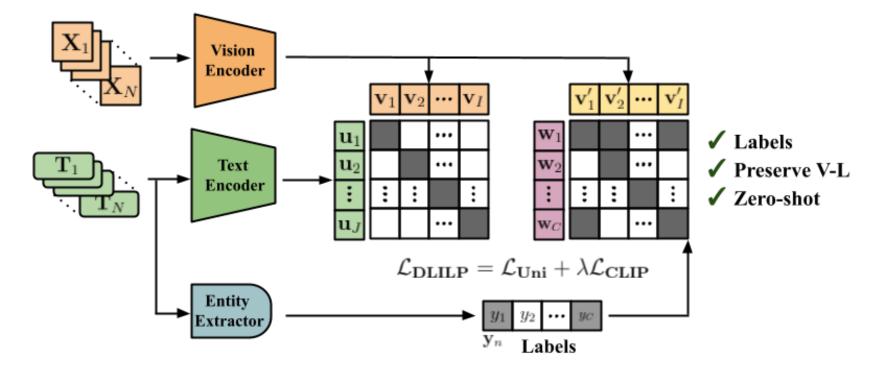
$$\mathcal{L}_{\text{UniCL}}^{\text{t2i}}(\theta,\phi,\tau|\mathcal{B}) = -\sum_{j\in\mathcal{B}} \frac{1}{|P_{\text{t2i}}(j)|} \sum_{j'\in P_{\text{t2i}}(j)} \log \frac{\exp(\mathbf{u}_{j'}^T \mathbf{v}_j/\tau)}{\sum_{i\in\mathcal{X}_B} \exp(\mathbf{u}_i^T \mathbf{v}_j/\tau)}$$
 Samples with same labels

Label: Husky

Pitfalls on Existing Pre-training Strategies



DLILP: Disentangled Language-Image-Label Pre-training



 $\mathcal{L}_{\text{DLILP}} = \mathcal{L}_{\text{Uni}}(\{\theta_f, \theta_p^{\text{I-L}}\}, \tau^{\text{I-L}}, \mathbf{W}|\mathcal{B}) + \lambda \cdot \mathcal{L}_{\text{CLIP}}(\{\theta_f, \theta_p^{\text{I-T}}\}, \phi, \tau^{\text{I-T}}|\mathcal{B})$

Experimental Setting

Table 1: Frontal Chest X-ray datasets assembly. We compiled open-access datasets for training and evaluation. Green-colored categories indicate novel classes not explicitly used during CheXpert and MIMIC pre-training.

Pre-train	#Images	Reports	#Labels	Categories
CheXpert (C) [13]	191,026		14	[NoF, EnlCard, Card, LuLes, LuOp, Edema, Cons,
MIMIC (M) [16]	154,595	×	14	PnMo, Atel, PnThor, PleEffu, PleOth, Fract, Dev]
PadChest [*] (P) [3]	96,201		84	(see Supp. Materials)
Evaluation	#Train	#Test	#Labels	Categories
CheXpert _{5×200}	1,000	1,000	5	[Atel, Card, Cons, Edema, PleEffu]
$MIMIC_{5 \times 200}$	1,000	1,000	5	Atel, Card, Cons, Edema, PleEffu
RSNA [33]	8,400	3,600	2	[NoF, PnMo]
SSIM ³	4800	1200	2	[NoF, PnThor]
COVID [4, 30]	1,200	4,000	4	[Normal, Covid, PnMo, LuOp]
NIH-LT [10, 40]	920	920	20	Atel, Card, PleEffu, Inf, mass, Nod, PnMo, noF,
				PnThor, Cons, Edema, Emph, Fib, PleThi, PnPer,
				PnMed, SubEm, TorAor, CalAor
VinDr [26]	2,000	2,000	5	[NoF, Bro, BrPn, BrLi, PnMo]

*PadChest is used for additional scalability experiments, only when specified.

Not explicitly labeled on pre-training dataset

1. Pre-training using image-text-label datasets.

A. Image-Label.

"A chest x-ray of [CLS] " / There is [CLS]"

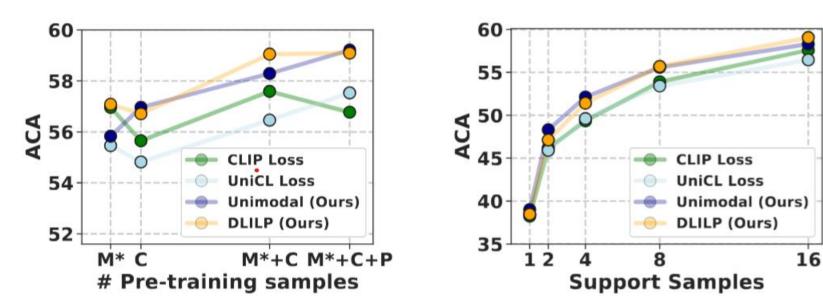
B. Image-Text.

"..."
$$\rightarrow$$
 NLP \rightarrow [0 0 0 0 0 1 0 0]
CheXpert-Labeler

2. Transferability

- A. Zero-shot classification.
- B. Few-shot Linear Probing.
- C. Base/New disentanglement.

Transferability Performance



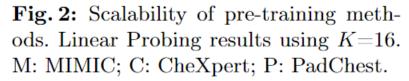


Fig. 3: Few-shot transferability results using Linear Probing for baseline and proposed pre-training strategies.

Table 2: Generalization/Transferability results. Performance of different pre-training strategies disentangling known (\mathcal{B}) and new findings (\mathcal{N}).

Pre-training	CheXp	MIMIC	SSIM	RNSA	NIH	I_{LT}	Vin	DR		Avg.	
	B	B	B	B	B	\mathcal{N}	B	\mathcal{N}	B	N	Avg.
(a) Zero-shot g	generali	zation									
CLIP Loss [29]	51.50	-49.70	77.80	$\bar{6}3.04$	40.98	29.10	68.66	32.20	58.61	30.65	44.63
UniCL Loss [46]	45.40	46.60	75.30	90.86	57.66	9.10	73.16	42.20	64.83	25.65	45.24
Unimodal	42.80	47.40	77.20	94.60	61.70	-	65.80	-	64.92	-	-
DLILP	49.50	48.60	77.90	93.50	60.80	29.10	54.20	31.10	64.08	30.10	47.09
(b) Linear prol	bing tra	ansferab	oility (K = 16)						1
CLIP Loss [29]	54.50	-49.60	69.10	93.20	46.52	32.50	71.68	38.20	64.10	35.35	49.73
UniCL Loss [46]	53.10	50.90	65.58	93.78	46.50	27.52	71.32	37.54	63.53	32.53	48.03
Unimodal	54.20	53.70	67.68	94.36	47.16	33.20	75.34	37.44	65.41	35.32	50.37
DLILP	55.60	54.50	72.74	93.82	50.66	32.24	71.36	40.76	66.45	36.50	51.48

No Zero-Shot?

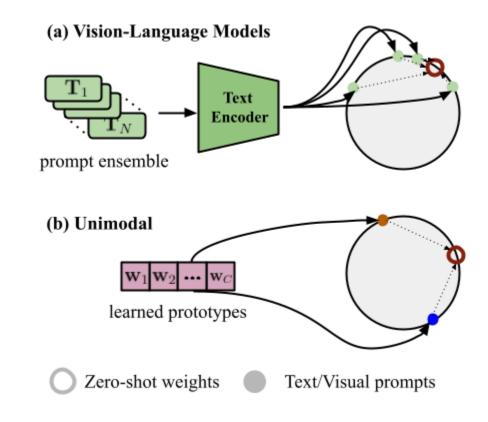
MedCLIP (EMNLP22) and MedKLIP (ICCV23) defend the effectivenes of visión-language models to generalize to novel categories using the COVID disease prediction.

Name: [Description]

COVID: ["the presence of patchy or confluent band like ground glass opacity or consolidation"]

	Table 3:	Zero-shot	on	COVID
--	----------	-----------	----	-------

Pre-training	2-cl	ass	4-cl	ass	
	Name	Desc.	Name	Desc.	
MedCLIP [43]	74.1	78.8	40.5	42.9	
MedKLIP [29]	51.8	82.9	20.2	32.5	
CLIP Loss [29]	69.6	74.2	$\overline{32.7}^{-}$	$\overline{48.8}$	
UniCL Loss [46]	80.5	83.7	45.5	44.8	
Unimodal	-	85.1	-	51.6	
DLILP	77.0	81.6	36.6	50.0	



SoTA Comparison

Table 4: Available vision-language models transferability. Linear probing results (K = 16) for SoTA pre-trained models.

Method	Data	CheXp	MIMIC	SSIM	RNSA	NIH	VinDR	COVID	Avg.
MedKLIP _{ICCV'23} [44]	М	34.30	32.60	64.82	88.18	14.04	26.34	68.04	46.90
KED _{Nat.Com.'23} [49]	\mathbf{M}	42.50	40.20	66.04	92.12	19.40	26.18	73.24	51.38
BioVIL _{ECCV'22} [3]	M+Pub	46.70	43.80	73.68	94.08	21.22	26.20	62.46	52.59
Unimodal	Μ	51.80	51.30	68.04	93.42	21.20	27.68	77.40	55.83
DLILP	Μ	53.30	52.90	69.80	93.78	25.34	26.84	77.62	57.08
GlorIA _{ICCV'21} [12]	С	46.00	41.60	66.30	91.16	18.78	23.02	72.92	51.40
Unimodal	С	52.30	48.20	71.52	93.88	24.20	29.14	79.48	56.96
MedCLIP _{EMNLP'22} [43]	M+C	54.40	50.50	69.48	94.20	20.98	27.80	72.30	55.67
CXR-CLIP _{MICCAI'23} [47]	$\mathbf{M} + \mathbf{C}$	52.20	46.10	69.34	92.00	25.90	26.26	76.82	55.52
Unimodal	M+C	54.20	53.70	67.68	94.36	26.20	30.26	81.62	58.29
DLILP	M+C	55.60	54.50	72.74	93.82	26.72	28.98	81.02	59.05
Unimodal	M+C+P	56.00	55.20	73.84	94.00	26.12	28.48	80.86	59.21
DLILP	M+C+P	56.30	53.00	73.56	94.08	25.72	29.28	81.66	59.09

M: MIMIC; C: CheXpert; P: PadChest; PubMed: PubMed text abstracts.

Take-home messages

- Vision-language pre-training is a powerfull tool to leverage large datasets with text supervision.
- Nevertheless, it does not do magic. The zero-shot performance is highly correlated with the class proportion present in the pre-training dataset^{*}. No "Zero-Shot" Without Exponential Data: Pretraining Concept Frequency Determines Multimodal Model Performance (ICLR24), DPFM Workshop.
- In the medical domain, several challenges limit its usability.
 - Challenging expert, fine-grained concepts.
 - Limited data with text supervision: label information is predominant.
- Simple Supervised pre-training is largely competitive.
- We still need better methods to combine fine-grained labels and weak text supervisión.
 - Let's not cheat ourselves : Base/New evaluation.

Montreal Medical Imaging Seminar ÉTS Montreal, 1st May 2024

A Reality Check of Vision-Language Pre-training in Radiology: Have We Progressed Using Text?

Julio Silva-Rodríguez, Jose Dolz and Ismail Ben Ayed ÉTS Montreal

