

Full Conformal Adaptation of Medical Vision-Language Models

Maria

Leo Fillioux

1x Cournède

Paul-Henry

Stergios

Christodoulidis

Ismail

Jose

Vision-Language Models

Vision-Language Models

Vision-Language Models

Downstream tasks

Efficient downstream adaptation

Efficient downstream adaptation

Uncertainty quantification trough sample rejection

Uncertainty quantification trough sample rejection

Uncertainty quantification trough sample rejection

Split Conformal Prediction

 $\mathcal{P}(Y \in C(\mathbf{x})) \ge 1 - \alpha$

Split Conformal Prediction

Split Conformal Prediction

$$\mathcal{P}(Y \in C(\mathbf{x})) \ge 1 - \alpha$$

How to construct C(x)?

$$\mathcal{S}(\mathbf{x}, y) = 1 - \hat{p}_{k=y}$$

non-conformity score
$$\hat{s} = \inf \left[s : \frac{|i \in \{1, \dots, N\} : s_i \leq s|}{N} \geq \frac{\left[(N+1)(1-\alpha) \right]}{N} \right]$$

NN

Calibration set (labeled few-shot)

Test set (unlabeled)

Can we adapt and conformalize with the <u>same calibration data</u>?

Can we adapt and conformalize with the <u>same calibration data</u>?

Why do we break the exchangeability assumption in the scores?

Why do we break the exchangeability assumption in the scores?

Why do we break the exchangeability assumption in the scores?

Random permutations change the learned weights. Exchangeability between cal/test scores is lost.

• Alternative: adding additional data for calibration after adaptation.

• Alternative: adding additional data for calibration after adaptation.

Full conformal prediction scenario (Vovk et al. 1998).

Transduction with Confidence and Credibility

C. Saunders, A. Gam merman, V. Vovk Royal Holloway, University of London Egham, Surrey, England. {craig,alex,vovk}@dcs.rhbnc.ac.nk

Algorithmic Learning in a Random World

Vladimir Vovk University of London Egham, United Kingdom

Train and conformalize with the training + test set

Full conformal prediction scenario (Vovk et al. 1998).

Idea:

1) We know that the true label of a test point lies on the label space.

2) Let's fit the model wich each label assignment and check if the errors on the test point conform to the training observations.

- Full conformal prediction scenario (Vovk et al. 1998).
 - A: For each test data point...
 - **B: For each label...**

$$\mathcal{D}_{train} = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_r, y_r), ..., (\mathbf{x}_R, y_R), (\mathbf{x}_m, y)\}$$

Full conformal prediction scenario (Vovk et al. 1998).

- A: For each test data point...
 - **B: For each label...**

$$\mathcal{D}_{train} = \{ (\mathbf{x}_1, y_1), ..., (\mathbf{x}_r, y_r), ..., (\mathbf{x}_R, y_R), (\mathbf{x}_m, y) \}$$

1. Train model on joint dataset $(\pi(\cdot)^y): y_m = y \in \mathcal{Y}$

Full conformal prediction scenario (Vovk et al. 1998).

- A: For each test data point...
 - **B: For each label...**

$$\mathcal{D}_{train} = \{ (\mathbf{x}_1, y_1), ..., (\mathbf{x}_r, y_r), ..., (\mathbf{x}_R, y_R), (\mathbf{x}_m, y) \}$$

1. Train model on joint dataset

$$\pi(\cdot)^y: y_m = y \in \mathcal{Y}$$

2. Search quantile in training data

$$s_i^y = \mathcal{S}(\pi_i^y(\mathbf{x}), y_i)$$

3. Accept/Reject label

$$\mathcal{C}(\mathbf{x}) = \{ y \in \mathcal{Y} : s^y \le \hat{s}^y \}$$

Full conformal prediction scenario (Vovk et al. 1998).

- A: For each test data point...
 - B: For each label...

$$\mathcal{D}_{train} = \{ (\mathbf{x}_1, y_1), ..., (\mathbf{x}_r, y_r), ..., (\mathbf{x}_R, y_R), (\mathbf{x}_m, y) \}$$

1. Train model on joint dataset

$$\pi(\cdot)^y : y_m = y \in \mathcal{Y}$$

2. Search quantile in training data

$$s_i^y = \mathcal{S}(\pi_i^y(\mathbf{x}), y_i)$$

3. Accept/Reject label

$$\mathcal{C}(\mathbf{x}) = \{ y \in \mathcal{Y} : s^y \le \hat{s}^y \}$$

Access to train data

Multiple (expensive) model fits per sample

Full conformal adaptation (FCA)

Múltiple (<u>light</u>) prototype fits per sample

Interpretation

Interpretation

Assume the true label is assigned. In full conformal settings, the test point is used for training (transductive)

$$\mathcal{D}_{train} = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_r, y_r), ... (\mathbf{x}_R, y_R), (\mathbf{x}_m, y)\}$$

Interpretation

Random permutations do not change the learned weights. Exchangeability is maintained.

Interpretation

Random permutations do not change the learned weights. Exchangeability is maintained.

$$\min_{\mathbf{W}} \mathcal{L}(\mathbf{W}) = -\frac{1}{N} \sum_{i=1}^{N} \sum_{c=1}^{C} y_{ic} \ln(p_{ic}(\mathbf{W})) + \frac{\lambda}{2} \sum_{c=1}^{C} ||\mathbf{w}_{c} - \mathbf{t}_{c}||_{2}^{2}.$$
$$\mathcal{L} = g_{1} + g_{2}$$
$$g_{1} = -\frac{1}{N} \sum_{i=1}^{N} \sum_{c=1}^{C} y_{ic} (\mathbf{v}^{\top} \mathbf{w}_{c}/\tau) + \frac{\lambda}{2} \sum_{c=1}^{C} ||\mathbf{w}_{c} - \mathbf{t}_{c}||_{2}^{2}$$

$$g_2 = \frac{1}{N} \sum_{i=1}^{N} \ln \left(\sum_{j=1}^{C} \exp(\mathbf{v}^{\top} \mathbf{w}_j / \tau) \right)$$

$$p_c(\mathbf{W}) = \frac{\exp(\mathbf{v}^{\top} \mathbf{w}_c / \tau)}{\sum_{j=1}^{C} \exp(\mathbf{v}^{\top} \mathbf{w}_j / \tau)}$$

$$\begin{split} \min_{\mathbf{W}} \mathcal{L}(\mathbf{W}) &= -\frac{1}{N} \sum_{i=1}^{N} \sum_{c=1}^{C} y_{ic} \ln(p_{ic}(\mathbf{W})) + \frac{\lambda}{2} \sum_{c=1}^{C} ||\mathbf{w}_{c} - \mathbf{t}_{c}||_{2}^{2}. \\ \mathcal{L} &= g_{1} + g_{2} \\ g_{1} &= -\frac{1}{N} \sum_{i=1}^{N} \sum_{c=1}^{C} y_{ic} (\mathbf{v}^{\top} \mathbf{w}_{c} / \tau) + \frac{\lambda}{2} \sum_{c=1}^{C} ||\mathbf{w}_{c} - \mathbf{t}_{c}||_{2}^{2} \\ \frac{\partial g_{1}}{\partial \mathbf{w}_{c}} &= -\frac{1}{N} \sum_{i=1}^{N} (y_{ic} \mathbf{v} / \tau) + \lambda (\mathbf{w}_{c} - \mathbf{t}_{c}) \\ \mathbf{w}_{c}^{*} &= \arg \min_{\mathbf{w}_{c}} \frac{\partial g_{1}}{\partial \mathbf{w}_{c}} = \frac{1}{\lambda N \tau} \sum_{i=1}^{N} y_{ic} \mathbf{v} + \mathbf{t}_{c} \\ \hline \mathbf{V}^{isual prototypes} \end{split}$$

Valid (finite-sample) coverage and strong discriminative performance

	Method		$\alpha = 0.10$			
		$ACA\uparrow$	Cov.	Size↓	$\mathrm{CCV}\!\!\downarrow$	
U	SCP	50.2	0.890	3.99	9.96	
Ý	Adapt+SCP	$67.1_{+16.9}$	0.842	$2.40_{-1.59}$	$11.17_{\pm 1.21}$	
Η	FCA $(Ours)$	$67.1_{+16.9}$	0.896	$2.91_{-1.08}$	$8.38_{-1.58}$	
S	SCP	50.2	0.900	4.05	9.59	
Ч	Adapt+SCP	$67.1_{+16.9}$	0.858	2.56-1.49	$8.57_{-1.02}$	
4	FCA $(Ours)$	$67.1_{+16.9}$	0.898	$3.06_{-0.99}$	$6.12_{-3.47}$	
S	SCP	50.2	0.901	4.16	9.55	
PI	Adapt+SCP	$67.1_{+16.9}$	0.856	$2.55_{-1.61}$	8.64-0.91	
Ц	FCA $(Ours)$	$67.1_{+16.9}$	0.898	$3.05_{-1.11}$	$6.21_{-3.34}$	

(16 labeled shots per class for adaptation)

Per-dataset analysis

Qualitative assessment

Some take-home messages

- Medical VLMs are strong black-box embedding models. Its transfer potential allows us for data-efficient deployment scenarios.
- Conformal prediction is a promising ML framework for providing practitioners with user-controlled, real-time guarantees.
- From focusing on "accuracy" to "efficiency"/"usefulness".
- Many aspects to explore yet, e.g., is exchangeability a realistic assumption in medical image analysis?

Full Conformal Adaptation of Medical Vision-Language Models

Leo Fillioux

Paul-Henry Cournède

Maria Vakalopoulou

Stergios

Christodoulidis

Ismail

Jose

Few-shot adaptation results

Ablation study on hyper-parameters for SS-text

Method	Setting	K = 1	K=2	K = 4	K = 8	K = 16
Zero-shot [33]	(only text)	50.2	50.2	50.2	50.2	50.2
SimpleShot [47]	(only vision)	50.1	57.2	61.3	65.1	67.4
TIP-Adapter [51]	(training-free)	55.5	55.5	60.2	62.2	63.2
LP++ [14]	(training-free)	50.7	51.0	51.4	52.1	53.2
SS-Text	Fixed $\lambda = 0.1/\tau$	55.1	59.0	61.5	63.6	64.3
SS-Text	Fixed $\lambda = 1.0/\tau$	53.5	54.1	54.5	54.7	54.6
SS-Text	Fixed $\lambda = 10/\tau$	51.2	51.2	51.2	51.1	51.2
SS-Text	$\lambda_c \simeq \text{zero-shot perf.}$ [39]	51.4	58.4	62.6	65.7	67.4
SS-Text (Ours)	$\lambda = 1/(N\tau)$	56.7	59.7	62.6	65.6	67.4

More error rates

Method		$\alpha = 0.10$			$\alpha = 0.05$			
	$ACA\uparrow$	Cov.	Size↓	$\mathrm{CCV}\!\!\downarrow$	Cov.	Size↓	$\mathrm{CCV}\!\!\downarrow$	
U SCP	50.2	0.890	3.99	9.96	0.951	4.88	5.68	
Adapt+SCP	$67.1_{+16.9}$	0.842	2.40-1.59	$11.17_{\pm 1.21}$	0.921	$3.07_{-1.81}$	6.87+1.19	
FCA $(Ours)$	$67.1_{+16.9}$	0.896	$2.91_{-1.08}$	8.38-1.58	0.952	$3.56_{-1.32}$	$5.02_{-0.66}$	
$\mathbf{v}_{\mathrm{SCb}}$	50.2	0.900	4.05	9.59	0.952	4.88	5.54	
Adapt+SCP	$67.1_{+16.9}$	0.858	2.56-1.49	8.57-1.02	0.924	3.19 -1.69	$6.08_{+0.54}$	
FCA $(Ours)$	$67.1_{+16.9}$	0.898	$3.06_{-0.99}$	$6.12_{-3.47}$	0.949	$3.67_{-1.21}$	$4.24_{-1.30}$	
SCP SCP	50.2	0.901	4.16	9.55	0.952	5.12	5.57	
Adapt+SCP	67.1 _{+16.9}	0.856	$2.55_{-1.61}$	8.64-0.91	0.923	3.17 -1.95	$6.12_{\pm 0.55}$	
FCA (Ours)	$67.1_{+16.9}$	0.898	$3.05_{\textbf{-1.11}}$	$6.21_{-3.34}$	0.951	$3.66_{-1.46}$	4.23-1.34	

(16 labeled shots per class for adaptation)