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Vision-Language Models
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Vision-Language Models
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Medical Vision-Language Models
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Medical Vision-Language Models

= Downstream tasks
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Medical Vision-Language Models

= Efficient downstream adaptation
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Medical Vision-Language Models

= Efficient downstream adaptation
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Uncertainty quantification trough sample rejection
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Uncertainty quantification trough sample rejection
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Uncertainty quantification trough sample rejection
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Split Conformal Prediction

PlYe(Cx)>1—a
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Split Conformal Prediction

PlYe(Cx)>1—a

/ Error rate, e.g., 10%

Conformal sets

GT: NC GT: G3 ~ GT'G3  GT:G5 GT: G5
CP: [NC] CP: [G3] CP: [G3,G4] CP: [G5] CP: [G4,G5]
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Split Conformal Prediction

PlYe(Cx)>1—a

= How to construct C(x)? .
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* How to construct C(x)?

IPMI’25

Split Conformal Prediction | marginal over X'

/ Under cal/test
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Pitfalls of conformal prediction and transfer learning

= Can we adapt and conformalize with the same calibration data?

Adapt with the Adjust conformal
calibration set predictor Test

=R

Test set
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Pitfalls of conformal prediction and transfer learning

= Can we adapt and conformalize with the same calibration data?
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Pitfalls of conformal prediction and transfer learning

= Why do we break the exchangeability assumption in the scores?

. Support sample (labeled)
A Class prototype (learned)

-

_) Test point
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Pitfalls of conformal prediction and transfer learning

= Why do we break the exchangeability assumption in the scores?
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Pitfalls of conformal prediction and transfer learning

= Why do we break the exchangeability assumption in the scores?
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test point

Random permutations change the

learned weights. Exchangeability
. Support sample (labeled) between cal/test scores is lost.
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-

(_) Test point
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Pitfalls of conformal prediction and transfer learning

= Alternative: adding additional data for calibration after adaptation.

Adapt with the Adjust conformal
calibration set predictor Test

] e

*

Calibration set Test set
(labeled few-shot) (unlabeled)
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Pitfalls of conformal prediction and transfer learning

= Alternative: adding additional data for calibration after adaptation.
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Our setting: full conformal adaptation

= Full conformal prediction scenario (Vovk et al. 1998).

Transduction with Confidence and Credibility Algorlthmlc Learning
C. Saunders, A. Gam merman, V. Vovk in a Random World

Royal Holloway, University of London Vladimir Vovk
Egham, Surrey, England.

_ University of London
{craig,alex,vovk}@dcs.rhbnc.ac.nk

Egham, United Kingdom

Train and conformalize
with the training + test set
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Our setting: full conformal adaptation

= Full conformal prediction scenario (Vovk et al. 1998).

Idea:
1) We know that the true label of a test point lies

on the label space.
2) Let’s fit the model wich each label

assignment and check if the errors on the test
point conform to the training observations.

IPMI’25  Full Conformal Adaptation of Medical Vision-Language Models



Our setting: full conformal adaptation

= Full conformal prediction scenario (Vovk et al. 1998).

A: For each test data point...

B: For each label...

’ —
Dt?"am — {(Xla yl)a ooy (X’ra y‘r)a “'(XRa yR)af(\Xma yD
-_—
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Our setting: full conformal adaptation

= Full conformal prediction scenario (Vovk et al. 1998).

A: For each test data point...

B: For each label...

Dt?"am — {(Xla yl)a ey (X’ra y‘r)a “'(XRa yR)a (X’ma y)}

1. Train model on joint dataset
-~

(7()) Y =y €Y
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Our setting: full conformal adaptation

= Full conformal prediction scenario (Vovk et al. 1998).

A: For each test data point...

B: For each label...

Dt?"am — {(Xla yl)a ey (X’ra y‘r)a “'(XRa yR)a (X’ma y)}

1. Train model on joint dataset

() Yy =y €Y
2. Search quantile in training data

s; = S(m}(x), yi)

1
3. Accept/Reject label

Cx)={ye)y: s’ <}
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Our setting: full conformal adaptation

= Full conformal prediction scenario (Vovk et al. 1998).

IPMI’25

A: For each test data point...

B: For each label...

Dt?"am — {(Xla yl)a ey (X’ra y‘r)a “'(XRa yR)a (X’ma y)}

1. Train model on joint dataset

() Yy =y €Y
2. Search quantile in training data

s; = S(m (%), yi)

1
3. Accept/Reject label

Cx)={ye)y: s’ <}

Full Conformal Adaptation of Medical Vision-Language Models

Access to train data

Multiple (expensive)
model fits per sample




Our setting: full conformal adaptation

* Full conformal adaptation (FCA)

Full conformal loop with the
adaptation + test set

/\ Access to (small)
jﬂ @ % adaptation data

~ ", Test set Muiltiple (light) prototype
(unlabeled) fits per sample
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Our setting: full conformal adaptation

" Interpretation

. Support sample (labeled)
A Class prototype (learned)

-

_) Test point
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Our setting: full conformal adaptation

u Interpretation Assume the true label is assigned. In full conformal
settings, the test point is used for training (transductive)

- / Dirain = {(X1, Y1) -y (X Yr )y - (XR, YR), (Ximy Y) }

. Support sample (labeled)
A Class prototype (learned)

-

(_) Test point
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Our setting: full conformal adaptation

" Interpretation

. Support sample (labeled)
A Class prototype (learned)

(”) Test point

Exchange a train and
test point
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Random permutations do not
change the learned weights.
Exchangeability is maintained.



Our setting: full conformal adaptation

" Interpretation

. Support sample (labeled)
A Class prototype (learned)

(”) Test point

Exchange a train and
test point
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Random permutations do not
change the learned weights.
Exchangeability is maintained.



Training-free approximation for constrained linear probing
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Training-free approximation for constrained linear probing
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Training-free approximation for constrained linear probing

min ﬁ(W) — _%ZZ?J@C lIl pzc + Z ||WC t ||2

W
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Training-free approximation for constrained linear probing

SS-Text solver:

.
W, = Z YieV + t,
AN T —
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Training-free approximation for constrained linear probing

SS-Text solver:
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Training-free approximation for constrained linear probing

SS-Text solver:
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Training-free approximation for constrained linear probing

(in a particular use-case)

SS-Text solver: -
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Conformal Prediction Results

= Valid (finite-sample) coverage and strong discriminative performance

Method a=0.10
ACAT Cov. Size] CCV|
¢ SCP 50.2  0.890 3.99 9.96

*ﬂ Ad&pt+SCP 67. 1_|_15 g 0.842 2. 40_1 59 11.17+1,21
FCA (Ours) 67.1116.0 0.896 2.91-1.08 8.38.1.5s8

n SCP 00.2 0.900 4.05 9.59
i Ad&pt+SCP 67.1+15.g 0.858 2.56_1,49 8.57_1,02
FCA (O‘H?"S) 67.1+16,9 0.898 3.06_{],99 6.12_3,47

E SCP 50.2 0.901 4.16 9.55
<« Adapt+SCP 67.1_|_13,9 0.856 2.55.1.61 8.64.0.01
m FCA (OHT‘S) 67.14_13.9 0.898 3.05_1.11 6.21_3_34

(16 labeled shots per class for adaptation)
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= Per-dataset analysis
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Conformal Prediction Results

= Qualitative assessment
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IPMI’25

Some take-home messages

Medical VLMs are strong black-box embedding models. Its transfer
potential allows us for data-efficient deployment scenarios.

Conformal prediction is a promising ML framework for providing
practitioners with user-controlled, real-time guarantees.

From focusing on “accuracy” to “efficiency”/”usefulness”.

Many aspects to explore yet, e.g., is exchangeability a realistic
assumption in medical image analysis?

Full Conformal Adaptation of Medical Vision-Language Models
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Few-shot adaptation results

= Ablation study on hyper-parameters for SS-text

Method Setting K=1K=2K=4K=8K =16
Zero-shot [37] (only text) 50.2 50.2 50.2 50.2 50.2
SimpleShot [17] (only vision) 50.1 57.2 61.3 65.1 674
TIP-Adapter [51] (training-free) 55.5 55.5 60.2 622 63.2
LP++ [14] (training-free) 50.7 51.0 514 521 53.2
S5-Text Fixed A =0.1/7 p0.1 59.0 615 636 64.3
S5-Text Fixed A =1.0/7 03.0 541 545 547 546
S5-Text Fixed A = 10/7 0l.2 51.2 51.2 511 51.2
SS-Text Ae =~ zero-shot perf. [30] 51.4 584 626 65.7 67.4
SS-Text (Ours) A= 1/(NT) 56.7 59.7 62.6 656 67.4
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Conformal Prediction Results

= More error rates

Method a=0.10 a = 0.05
ACAT Cov. Sizel CcCV] Cov. Sizel CCV]
O SCP 50.2  0.890 3.99 9.96 0.951 4.88 5.68

*I: Ad&pt+SCP 67. 1_|_15 9 0.842 2. 40_1 59 11.17+1,21 0.921 3.07_1,31 6.87+1_1g
FCA (Ours) 67.1116.0 0.896 2.91_1.08 8.38.1.58 0.952 3.56-.1.32 5.02-0.66

n SCP 00.2 0.900 4.05 9.59 0.952 4.88 5.54
i Ad&pt+SCP 67.1+15.9 0.858 2.56_1,49 8.57_1,.[)2 0.924 3.19_1,59 6.08+0_54
FGA (O‘H?"S) 67.1+16,9 0.898 3.06_0,99 6.12_3,47 0.949 3.67_1_21 4.24_1,30

E SCP 50.2  0.901 4.16 9.55 0.952 5.12 5.57
<« Ada,pt+SCP 67.1_|_13,9 0.856 2.55.1.61 8.64.0.91 0.923 3.17.1.05 6.12_|_0_55
m FGA (OH?"S) 67.14_13.9 0.898 3.05_1.11 6.21_3_34 0.951 3.66_1_43 4.23_1,34

(16 labeled shots per class for adaptation)
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