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▪ Downstream tasks
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▪ Efficient downstream adaptation
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Medical Vision-Language Models
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▪ Efficient downstream adaptation
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Medical Vision-Language Models

Machine learning 
models fail!
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Uncertainty quantification trough sample rejection
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Uncertainty quantification trough sample rejection
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Split Conformal Prediction
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Split Conformal Prediction
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Split Conformal Prediction
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Split Conformal Prediction
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Pitfalls of conformal prediction and transfer learning

▪ Can we adapt and conformalize with the same calibration data?

IPMI’25 Full Conformal Adaptation of Medical Vision-Language Models

Adapt with the 
calibration set

Calibration set
(labeled few-shot)

Test

Adjust conformal 
predictor

Test set
(unlabeled)

16/45
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Pitfalls of conformal prediction and transfer learning

▪ Why do we break the exchangeability assumption in the scores?
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Pitfalls of conformal prediction and transfer learning

▪ Why do we break the exchangeability assumption in the scores?
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Random permutations change the
learned weights. Exchangeability
between cal/test scores is lost.
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Pitfalls of conformal prediction and transfer learning

▪ Alternative: adding additional data for calibration after adaptation.
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Our setting: full conformal adaptation

IPMI’25 Full Conformal Adaptation of Medical Vision-Language Models

▪ Full conformal prediction scenario (Vovk et al. 1998).

Train and conformalize 
with the training + test set

Training set
(labeled )
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(unlabeled)
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Our setting: full conformal adaptation

IPMI’25 Full Conformal Adaptation of Medical Vision-Language Models

Idea:

1) We know that the true label of a test point lies

on the label space.

2) Let’s fit the model wich each label

assignment and check if the errors on the test

point conform to the training observations.

▪ Full conformal prediction scenario (Vovk et al. 1998).
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A: For each test data point…

B: For each label…

1. Train model on joint dataset

2. Search quantile in training data

3. Accept/Reject label

▪ Full conformal prediction scenario (Vovk et al. 1998).

Access to train data

Multiple (expensive) 
model fits per sample
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Our setting: full conformal adaptation

IPMI’25 Full Conformal Adaptation of Medical Vision-Language Models

▪ Full conformal adaptation (FCA)

Full conformal loop with the 
adaptation + test set

Adaptation set
(labeled few-shot)

Test set
(unlabeled)

Access to (small) 
adaptation data

Múltiple (light) prototype
fits per sample
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▪ Interpretation

Our setting: full conformal adaptation

Support sample (labeled)

Class prototype (learned)

Test point
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IPMI’25 Full Conformal Adaptation of Medical Vision-Language Models

▪ Interpretation

Our setting: full conformal adaptation

Assume the true label is assigned. In full conformal
settings, the test point is used for training (transductive)
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Class prototype (learned)

Test point
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IPMI’25 Full Conformal Adaptation of Medical Vision-Language Models

Exchange a train and 
test point

Random permutations do not
change the learned weights. 

Exchangeability is maintained.
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Training-free approximation for constrained linear probing
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Training-free approximation for constrained linear probing
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TextualVisual prototypes
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Training-free approximation for constrained linear probing
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SS-Text solver:
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more shots

SS-Text solver:
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more shots

SS-Text solver:
Skin (histology)
M=30.000, C=16
• LP: 23h
• SS-Text: 15min

(in a particular use-case)

IPMI’25 Full Conformal Adaptation of Medical Vision-Language Models

Training-free approximation for constrained linear probing

40/45



Conformal Prediction Results

▪ Valid (finite-sample) coverage and strong discriminative performance

(16 labeled shots per class for adaptation)
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Conformal Prediction Results

▪ Per-dataset analysis

(more shots)
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Conformal Prediction Results

▪ Qualitative assessment
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Some take-home messages

▪ Medical VLMs are strong black-box embedding models. Its transfer 
potential allows us for data-efficient deployment scenarios.

▪ Conformal prediction is a promising ML framework for providing 
practitioners with user-controlled, real-time guarantees.

▪ From focusing on “accuracy” to “efficiency”/”usefulness”.

▪ Many aspects to explore yet, e.g., is exchangeability a realistic 
assumption in medical image analysis? 
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Few-shot adaptation results

▪ Ablation study on hyper-parameters for SS-text
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Conformal Prediction Results

▪ More error rates

(16 labeled shots per class for adaptation)
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