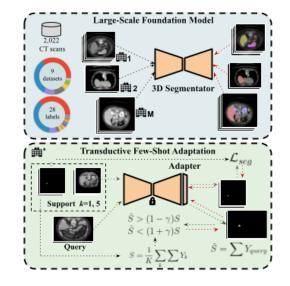


Towards foundation models and few-shot parameterefficient fine-tuning for volumetric organ segmentation

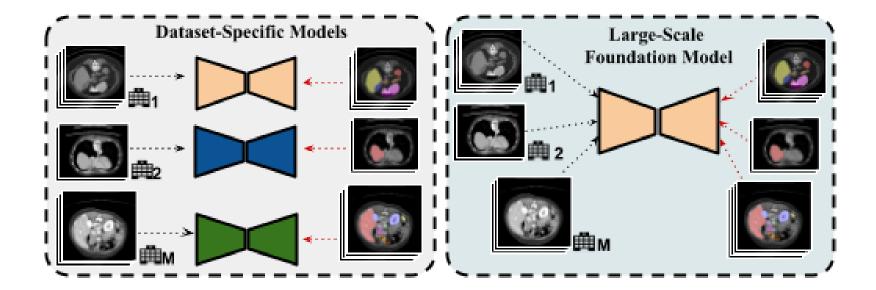
Julio Silva-Rodríguez, Jose Dolz and Ismail Ben Ayed ETS Montreal

https://github.com/jusiro/fewshot-finetuning



Towards foundation models for volumetric segmentation

- Foundation models are in their early stages for medical volume segmentation.
- Some works have already shown their **generalization/transferability potential**: CLIP-driven Universal Model (*Liu et al.* 23), Uniseg (*Ye et al.* 23).

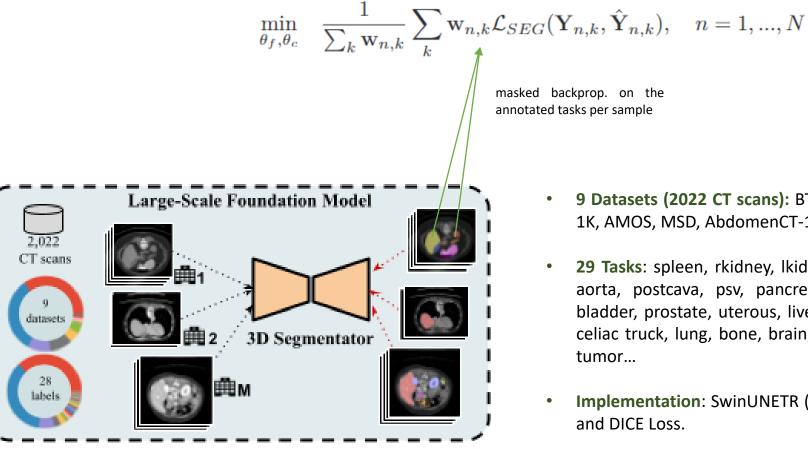


Pretrain-and-Adapt: real world requirements

- An experienced clinician requires an average of 10 minutes to segment an unique structure in a CT scan (Wasserthal et al 23).
- Current deep-learning models are huge (#P 555M), and so are CT volumes. Clinical institutions have limited computational resources.
- Current adaptation strategies are not prepared for this setting.

Setting	Methods	Avg. DSC
	FT	0.527
10-shot	FT-last	0.763
	Linear Probe [2]	0.777

Foundation model pre-training



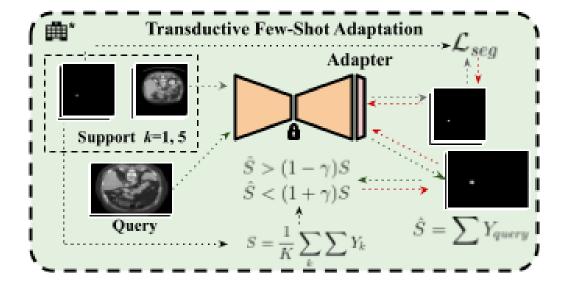
9 Datasets (2022 CT scans): BTCV, CHAOS, LiTS, KiTS, AbdomenCT-

- 1K, AMOS, MSD, AbdomenCT-12 organs, CT-org.
- **29 Tasks:** spleen, rkidney, lkidney, gall, esophagus, liver, stomach, aorta, postcava, psv, pancreas, radrenal, ladrenal, duodenum, bladder, prostate, uterous, liver tumor, kidney tumor, kidney cyst, celiac truck, lung, bone, brain, lung tumor, pancreas tumor, colon
- **Implementation**: SwinUNETR (*Tang et al.* 21) with sigmoid outputs

Parameter-Efficient Few-Shot Adapters

- Efficient Transfer Learning: using the frozen pre-trained model, we replace the classification head, and add a new one (i.e. adapter), including convolution blocks.
- Few-shot adaptation stage: taining on k support examples, and testing on one query sample.

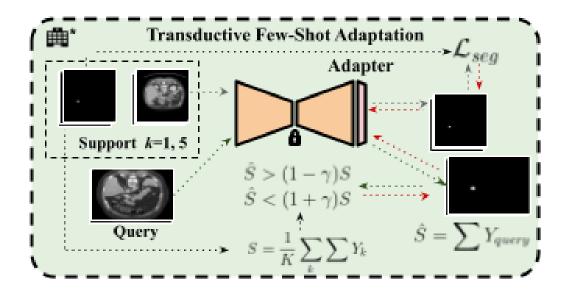
 $\min_{\phi} \quad \mathcal{L}_{SEG}(Y_k, \hat{Y}_k), \quad k = 1, ..., K$



- 1 unseen dataset: TotalSegmentator.
- **9 Tasks**: spleen, left kidney, gallbladder, esophagus, liver, pancreas, stomach, duodenum, aorta.
- Implementation: The spatial adapter contains one randomly initialized convolution block from SwinUNETR decoder.
- Adaptation is performen for each organ individually.

Incorporating priors during adaptation

• **Constraining to proper priors on the query sample**: we can estimate the organ size (S) on the support set and enhance the adaptation stage in a **transductive way**.



$$\mathcal{L}_{TI} = \begin{cases} |\hat{S} - (1 - \gamma)S|, & \text{if } \hat{S} < (1 - \gamma)S \\ |\hat{S} - (1 + \gamma)S|, & \text{if } \hat{S} > (1 + \gamma)S \\ 0, & \text{otherwise} \end{cases}$$

Transductive adaptation stage:

$$\min_{\phi} \quad \mathcal{L}_{SEG}(Y_k, \hat{Y}_k) + \lambda \mathcal{L}_{TI}(S, \hat{S}_{query}), \quad k = 1, ..., K$$

Results

Setting	Methods	Spl	lKid	Gall	Eso	Liv	Pan	Sto	Duo	Aor	Avg.		
	Generalization	0.920	0.891	0.768	0.300	0.950	0.782	0.707	0.363	0.628	0.701		
	Scratch	0.514	0.896	0.695	0.614	0.902	0.612	0.460	0.552	0.954	0.688		
All train	FT	0.591	0.940	0.654	0.674	0.939	0.853	0.698	0.830	0.926	0.789		
$({ m K}{=}{\sim}~40)$		0.954	0.895	0.812	0.423	0.942	0.797	0.784	0.679	0.715	0.777		
	Linear Probe 25	0.948	0.900	0.795	0.422	0.948	0.790	0.773	0.680	0.683	0.771		
	Adapter (Ours)	0.943	0.904	0.821	0.451	0.948	0.795	0.783	0.669	0.721	0.781		
	FT	0.369	0.889	0.249	0.281	0.957	0.454	0.511	0.117	0.917	0.527		1. Standard fully-supervised regime.
	FT-Last	0.960	0.915	0.807	0.425	0.947	0.789	0.723	0.552	0.749	0.763		
10-shot	Linear Probe 25	0.942	0.902	0.806	0.452	0.945	0.785	0.786	0.557	0.711	0.765		
I	Adapter (Ours)	1				0.945						1	2. Low-data regime.
	Adapter + TI $(Ours)$											\sim	0
	FT	0.553	0.611	0.294	0.586	0.648	0.442	0.164	0.485	0.657	0.493		
	FT-Last	0.947	0.712	0.774	0.438	0.952	0.756	0.701	0.619	0.720	0.735		3. Incorporate priors.
5-shot	Linear Probe 25					0.960							5. meorporate priors.
	Adapter (Ours)	0.921	0.896	0.822	0.391	0.949	0.752	0.693	0.632	0.680	0.748		
	Adapter + TI $(Ours)$	0.928	0.901	0.799	0.442	0.950	0.755	0.712	0.666	0.684	0.759	× /	
	FT	0.265	0.255	0.130	0.394	0.519	0.228	0.216	0.162	0.324	0.276		
1-shot	FT-Last	0.285	0.558	0.366	0.251	0.894	0.585	0.390	0.669	0.394	0.488		
	Linear Probe 25	0.552	0.888	0.671	0.316	0.944	0.488	0.684	0.696	0.679	0.657	/	
	Adapter (Ours)										0.654	/	
	Adapter $+$ TI (<i>Ours</i>)	0.550	0.888	0.681	0.448	0.947	0.470	0.689	0.631	0.664	0.663		
#Train Dars	me: Linear Probe (40)	Ada	ntor/1	FT I a	+ (20)	$0 \overline{6} \overline{K}$							

#TrainParams: Linear Probe (49) - Adapter/FT-Last (209.6K)

• Are current available models prepared for this setting?

Setting	Methods							Sto		
										0.524
$\begin{array}{c} \text{All train} \\ (\text{K}{=}{\sim}\ 40) \end{array}$										0.555
	Linear Probe 25	0.576	0.419	0.453	0.327	0.506	0.416	0.458	0.677	0.479
	Adapter (Ours)	0.687	0.439	0.522	0.457	0.702	0.532	0.493	0.706	0.567
										0.502
	Linear Probe 25	0.598	0.547	0.078	0.363	0.534	0.352	0.485	0.693	0.456
	Adapter (Ours)	0.680	0.496	0.601	0.376	0.585	0.530	0.520	0.676	0.558

Using pre-trained weights from SwinUNETR pre-trained on BTCV(*Tang et al.* 21)

• Our pre-trained weights are publicly available:

https://github.com/jusiro/fewshot-finetuning

Take-home messages

- In the clinical scenario, the adaptation of foundation models should require low data (fewshots) and limited computational resources.
- In this scenario, standard fine-tuning exhibits performance drops.
- Few-shot parameter-efficient fine-tuning (FSEFT): a novel and realistic setting for adapting volumetric foundation models on clinical scenarios .
- You can design ad-hoc adapters and incorporate priors during the adaptation.
- Potential: only 5-shots outperform training from scratch on the whole dataset and 300x less parameters.

Towards foundation models and few-shot parameter-efficient fine-tuning for volumetric organ segmentation

Julio Silva-Rodríguez, Jose Dolz and Ismail Ben Ayed ETS Montreal

