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### Foundation models for medical imaging: Hanfls on!
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## Overview

Paste
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example, they can be adapted using only *#few labeled** examples (so-
called **shots**), and requiring **minimal parameter tuning+*

In this tutorial, due to the large resources required for pre
trained, *#we will focus on the adaptation stage*¥. Nevertheless, we
will introduce toy examples to introduce the student to typical
losses and pipelines employed. Regarding the adaptation, **you will
learn how to archieve state-of-the-art performance on your image
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CONTRASTIVE VISION-LANGUAE PRE-TRAINING (CLIP)
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Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., Krueger, G., & Sutskever, I. (2021).
Learning Transferable Visual Models From Natural Language Supervision. International Conference on Machine Learning.



ZERO-SHOT PREDICTIONS

(2) Create dataset classifier from label text

A photo of

a

(3) Use for zero-shot prediction

Image
Encoder

Text
Encoder

Note: Text embeddings for target categories are also called class
prototypes, or zero-shot prototypes.

They do not require image samples to compute this reference
embedding, but only text, and that is why they are called “zero-
shot”. Images with similar representations will be more likely to
belong to this category.

Note that they are equivalent to a Linear output layer!

W (classes, features).

Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., Krueger, G., & Sutskever, I. (2021).
Learning Transferable Visual Models From Natural Language Supervision. International Conference on Machine Learning.
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BLACK-BOX ADAPTERS

= Work over pre-computed vision features - They are backbone-agnostic.
= May profit zero-shot prototypes for the target tasks.
= They are backbone-agnostic.

= Very efficient, do not even require GPU.
= Potentially, they do not require access to pre-trained weights (similar to ChatGPT).
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Gao, P., Geng, S., Zhang, R. et al. (2024). CLIP-Adapter: Better Vision-Language Models with Feature Adapters. Int J Comput Vis.

Silva-Rodriguez, J., Hajimiri, S., Ben Ayed, I., Dolz, J. (2024). A Closer Look at the Few-Shot Adaptation of Large Vision-Language Models. IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR)



PARAMETER-EFFICIENT FINE-TUNING

= Tran a subset of parameters to modify deep features.

= Two types: selective, and additive.

= More efficient than full-finetuning, and more flexible than black-box Adapters.
= |f carefully designed, they can avoid catastrophic forgetting.

A. Affine-Layer Norm B. Bias Tuning C. Low-Rank Adapters

Usually applied in ViTs to k,q,v
layers of MultiHeadAttention

*Bel oy = oat

,y \/V hI
a,r
r— Elr Add and tune a
We only tune these Yy = [ * 7y +@ “uu v residual connection
from the whole encoder \/Va,r with low-rank weights.
W € mixd
m Important!
& ¢ &7 Note B=0 when t=0
- I—

Frankle, J., Schwab, D. J., Morcos, A. S. (2021). Training batchnorm and only batchnorm: On the expressive power of random features in cnns.
International Conference on Learning Representations (ICLR).

Ben-Zaken, E., Ravfogel, S., Goldberg, Y. (2021). Bitfit: Simple parameter efficient fine-tuning for transformer-based masked language-models.
Association for Computational Linguistics.

Hu, E.J., et al.,, (2022). LoRA: Low-rank adaptation of large language models. International Conference on Learning Representations (ICLR).



MEDICAL VLMs - PLIP

Twitter data!

Small infiltrative-looking small glands with crystal-
loid secretions are suspicious for prostatic adeno-
carcinoma.
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Specialized on histology images

Huang Z, Bianchi F, Yuksekgonul M, Montine TJ, Zou J. (2023). A visual-language foundation model for pathology image analysis using medical
Twitter. Nature Medicine.



APPLICATION: GLEASON GRADING
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Deep learning in prostate cancer diagnosis and Gleason grading in histopathology images: An

Gleason grading system - Wikipedia
extensive study. Informatics in Medicine Unlocked.
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