



Trained with many data / tasks / domains









#### **Organizing the mess!**

- 1. Types of foundation models: a data perspective.
  - A. Generalist vs. Specialized
  - B. 2D vs. 3D
  - C. Multimodal vs. Unimodal
- 2. Learning/Usage Objectives
  - A. Zero-shot / Transfer Learning
  - **B.** In-Context Learning
  - C. Interactive Models ("SAM")
- 3. Zero-shot / Adaptation-oriented (3D data)
  - A. How to pre-train?
  - B. How useful are foundation models? Limitations on the adaptation stage
  - C. Few-shot Parameter-Efficient Fine-tuning



#### **Organizing the mess!**

- 1. Types of foundation models: a data perspective.
  - A. Generalist vs. Specialized
  - B. 2D vs. 3D
  - C. Multimodal vs. Unimodal
- 2. Learning/Usage Objectives
  - A. Zero-shot / Transfer Learning
  - B. In-Context Learning
  - C. Interactive Models ("SAM")
- 3. Zero-shot / Adaptation-oriented (3D data)
  - A. How to pre-train?
  - B. How useful are foundation models? Limitations on the adaptation stage
  - C. Few-shot Parameter-Efficient Fine-tuning

#### Generalist vs. Specialized (pre-training)



Huang et *al*. On The Challenges And Perspectives of Foundation Models For Medical Image Analysis. MedIA'24.

Generalist vs. Specialized (pre-training)



Huang et *al*. On The Challenges And Perspectives of Foundation Models For Medical Image Analysis. MedIA'24.

#### → Medical better than General (natural image)



Ma et al. Segment Anything in Medical Images. Nat.Com.'24

Generalist vs. Specialized (pre-training)



Huang et *al*. On The Challenges And Perspectives of Foundation Models For Medical Image Analysis. MedIA'24.

#### → Modality better than Medical ? (scarce empirical studies for segmentation)

Generalist vs. Specialized (pre-training)



Huang et *al*. On The Challenges And Perspectives of Foundation Models For Medical Image Analysis. MedIA'24.

# → Modality better than Medical ? (scarce empirical studies for segmentation) BUT... On VLMs for classification it is the case.

| (a) Zero-shot      |          | MESSIDOR | FIVES | REFUGE | 20x3  | $ODIR_{200x3}$ | MMAC  | Avg.  |  |
|--------------------|----------|----------|-------|--------|-------|----------------|-------|-------|--|
| CLIP               | ViT-B/32 | 0.200    | 0.256 | 0.433  | 0.333 | 0.480          | 0.183 | 0.314 |  |
| BiomedCLIP         | ViT-B/16 | 0.207    | 0.415 | 0.624  | 0.617 | 0.583          | 0.274 | 0.453 |  |
| FLAIR              | RN50     | 0.604    | 0.735 | 0.883  | 0.983 | 0.667          | 0.400 | 0.712 |  |
| (b) Linear Probing |          |          |       |        |       |                |       |       |  |
| ImageNet           | RN50     | 0.424    | 0.741 | 0.733  | 0.983 | 0.887          | 0.631 | 0.733 |  |
| CLIP               | ViT-B/32 | 0.491    | 0.800 | 0.720  | 0.950 | 0.917          | 0.642 | 0.753 |  |
| BiomedCLIP         | ViT-B/16 | 0.433    | 0.654 | 0.776  | 0.866 | 0.883          | 0.678 | 0.715 |  |
| RETFound           | ViT-B/16 | 0.457    | 0.765 | 0.747  | 0.950 | 0.887          | 0.547 | 0.725 |  |
| FLAIR              | RN50     | 0.719    | 0.879 | 0.843  | 1.000 | 0.935          | 0.740 | 0.852 |  |

Silva-Rodríguez et *al.* A Foundation Language-Image Model of the Retina: Encoding Expert Knowledge in Text Supervision. MedIA'24.

Generalist vs. Specialized (pre-training)



Huang et *al*. On The Challenges And Perspectives of Foundation Models For Medical Image Analysis. MedIA'24.

# → Modality better than Medical ? (scarce empirical studies for segmentation) BUT... Large domain GAP between modalities.



Butoi et al. Universeg: Universal medical image segmentation. ICCV'23.



Ma et al. Segment Anything in Medical Images. Nat.Com.'24

2D vs. 3D (pre-training)



**3D Volumes** 256 x 256 x 500 pixels 512 x 512 x 500 pixels

256 x 256 pixels 512 x 512 pixels

\* These scales not apply to other categories such as histology WSIs

2D vs. 3D (pre-training)



**3D Volumes** 256 x 256 x 500 pixels 512 x 512 x 500 pixels

# → Pre-training on 3D better than on 2D (also, a limitation of natural image pre-training)



Wang et al. SAM-Med3D: Towards General-Purpose Segmentation Models for Volumetric Medical Images. ArXiv'24.

14

Multimodal vs. Unimodal



#### Segmentation image-language pre-training



"A liver is in the image"

#### Multimodal vs. Unimodal

→ Medical Image Segmentation Foundation Models are (so far) Unimodal (FMs are not necessary multi-modal)

- 1. Scarcity of grounding language annotations with masks.
- 2. Already-existing large datasets with pixel/voxel annotations only.

3. Unclear contribution of text modality in absence of open-vocabulary concepts.



"A liver is in the image"

4. Some works include a CLIP-driven component, but its contribution is doubtful. (We will see this latter)

5. To explore in lesion segmentation?

Liu et al. CLIP-Driven Universal Model for Organ Segmentation and Tumor Detection. ICCV'23.





#### **Organizing the mess!**

- 1. Types of foundation models: a data perspective.
  - A. Generalist vs. Specialized
  - B. 2D vs. 3D
  - C. Multimodal vs. Unimodal
- 2. Learning/Usage Objectives
  - A. Zero-shot / Transfer Learning
  - **B.** In-Context Learning
  - C. Interactive Models ("SAM")
- 3. Zero-shot / Adaptation-oriented (3D data)
  - A. How to pre-train?
  - B. How useful are foundation models? Limitations on the adaptation stage
  - C. Few-shot Parameter-Efficient Fine-Tuning

#### **Zero-shot / Transfer Learning**

#### **ImageNet Philosophy**

![](_page_17_Picture_3.jpeg)

Figure 2: Framework of the proposed method.

Chen et al. Med3D: Transfer Learning for 3D Medical Image Analysis. ArXiv'19.

![](_page_17_Picture_6.jpeg)

Ulrich et *al*. MultiTalent: A Multi-Dataset Approach to Medical Image Segmentation. MICCAI'23.

Med3D('19)

#### **Zero-shot / Transfer Learning**

![](_page_18_Figure_2.jpeg)

Ulrich et *al*. MultiTalent: A Multi-Dataset Approach to Medical Image Segmentation. MICCAI'23.

Med3D('19)

(Zero-shot: VLMs vs. Unimodal)

![](_page_19_Figure_2.jpeg)

Unimodal

#### Zero-shot: not receiving any supervision from the target domain/task

### Is zero-shot predictions to novel categories a realistic objective?

Undandarao et al. No Zero-Shot without Exponential Data: Pretraining Concept frequency Determines Multimodal Model Performance. ICLRW-FM'24.

#### **In Context Learning**

#### "At the end of the day, practitioners won't fine-tune"

![](_page_20_Figure_3.jpeg)

UniverSeg

Tyche

**In Context Learning** 

![](_page_21_Figure_2.jpeg)

UniverSeg

**In Context Learning** 

![](_page_22_Figure_2.jpeg)

The representations from the query and support samples can interact at multiple scales

UniverSeg

UniverSeg

**In Context Learning** 

![](_page_23_Figure_3.jpeg)

CrossBlock $(u, V; \theta_z, \theta_v) = (u', V')$ , where: (2)  $z_i = A(\text{CrossConv}(u, v_i; \theta_z))$  for i = 1, 2, ..., n  $u' = 1/n \sum_{i=1}^{n} z_i$  Query output: average across support  $v'_i = A(\text{Conv}(z_i; \theta_v))$  for i = 1, 2, ..., n, CrossConv $(u, V; \theta_z) = \{z_i\}_{i=1}^{n}$ , for  $z_i = \text{Conv}(u||v_i; \theta_z)$ , Concatenate query and support activation maps

UniverSeg

#### **In Context Learning**

How this is trained? (Hint: based on meta-learning or *learning-to-learn*)

**Train Segmentation Tasks** 

![](_page_24_Picture_5.jpeg)

![](_page_24_Figure_6.jpeg)

UniverSeg

#### **In Context Learning**

How this is trained? (Hint: based on meta-learning or *learning-to-learn*)

**Train Segmentation Tasks** 

![](_page_25_Picture_5.jpeg)

 $\begin{aligned} & \text{for } k = 1, \dots, \text{NumTrainSteps do} \\ & t \sim \mathcal{T} \\ & (x_i^t, y_i^t) \sim t \\ & S^t \leftarrow \{(x_j^t, y_j^t)\}_{j \neq i}^n \\ & x_i^t, y_i^t \leftarrow \text{Aug}_t(x_i^t, y_i^t) \\ & S^t \leftarrow \{\text{Aug}_t(x_j^t, y_j^t)\}_j^n \\ & S^t \leftarrow \{\text{Aug}_t(x_i^t, y_j^t)\}_j^n \\ & x_i^t, y_i^t, S^t \leftarrow \text{Aug}_T(x_i^t, y_i^t, S^t) \\ & \hat{y}_i \leftarrow f_{\theta}(x_i^t, S^t) \\ & \ell \leftarrow \mathcal{L}_{\text{seg}}(\hat{y}_i, y_i^t) \\ & \theta \leftarrow \theta - \eta \nabla_{\theta} \ell \end{aligned} \end{aligned}$ 

▷ Sample Task
 ▷ Sample Query
 ▷ Sample Support
 ▷ Augment Query
 ▷ Augment Support
 ▷ Task Aug
 ▷ Predict label map
 ▷ Compute loss
 ▷ Gradient step

![](_page_25_Figure_8.jpeg)

UniverSeg

#### In Context Learning

How this is trained? (Hint: based on meta-learning or *learning-to-learn*)

**Train Segmentation Tasks** 

![](_page_26_Figure_5.jpeg)

for  $k = 1, \ldots$ , NumTrainSteps do

 $t \sim T$  $(x_i^t, y_i^t) \sim t$  $S^t \leftarrow \{(x_j^t, y_j^t)\}_{j \neq i}^n$  $\begin{array}{l} x_i^t, y_i^t \leftarrow \operatorname{Aug}_t(x_i^t, y_i^t) \\ S^t \leftarrow \{\operatorname{Aug}_t(x_j^t, y_j^t)\}_j^n \\ x_i^t, y_i^t, S^t \leftarrow \operatorname{Aug}_T(x_i^t, y_i^t, S^t) \end{array}$  $\hat{y}_i \leftarrow f_\theta(x_i^t, S^t)$  $\ell \leftarrow \mathcal{L}_{\text{seg}}(\hat{y}_i, y_i^t)$  $\theta \leftarrow \theta - \eta \nabla_{\theta} \ell$ end for

- ⊳ Sample Task ▷ Sample Query ▷ Sample Support
- ▷ Augment Query
- ▷ Augment Support
  - ▷ Task Aug
- $\triangleright$  Predict label map
  - ▷ Compute loss
  - ▷ Gradient step

- - Among all training tasks

Butoi et al. Universeg: Universal medical image segmentation. ICCV'23.

#### **In Context Learning**

#### How this is trained? (Hint: based on meta-learning or *learning-to-learn*)

Train Segmentation Tasks

![](_page_27_Picture_4.jpeg)

# for k = 1, ...,NumTrainSteps do $t \sim \mathcal{T}$ $(x_i^t, y_i^t) \sim t$ $S^t \leftarrow \{(x_j^t, y_j^t)\}_{j \neq i}^n$ $x_i^t, y_i^t \leftarrow \text{Aug}_t(x_i^t, y_i^t)$ $S^t \leftarrow \{\text{Aug}_t(x_j^t, y_j^t)\}_j^n$ $x_i^t, y_i^t, S^t \leftarrow \text{Aug}_T(x_i^t, y_i^t, S^t)$ $\hat{y}_i \leftarrow f_{\theta}(x_i^t, S^t)$ $\ell \leftarrow \mathcal{L}_{\text{seg}}(\hat{y}_i, y_i^t)$ $\theta \leftarrow \theta - \eta \nabla_{\theta} \ell$ end for

 □
 ▷ Sample Task

 □
 Sample Query

 □
 Sample Support

 □
 Augment Query

 □
 Augment Support

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

![](_page_27_Figure_7.jpeg)

![](_page_27_Figure_8.jpeg)

![](_page_27_Figure_9.jpeg)

UniverSeg

#### **In Context Learning**

How this is trained? (Hint: based on meta-learning or *learning-to-learn*)

Train Segmentation Tasks

![](_page_28_Picture_4.jpeg)

for k = 1, ..., NumTrainSteps do  $t \sim \mathcal{T}$   $(x_i^t, y_i^t) \sim t$   $S^t \leftarrow \{(x_j^t, y_j^t)\}_{j \neq i}^n$   $x_i^t, y_i^t \leftarrow Aug_t(x_i^t, y_i^t)$   $S^t \leftarrow \{Aug_t(x_j^t, y_j^t)\}_j^n$   $\bowtie$   $x_i^t, y_i^t, S^t \leftarrow Aug_T(x_i^t, y_i^t, S^t)$   $\hat{y}_i \leftarrow f_{\theta}(x_i^t, S^t)$   $\bowtie$   $\ell \leftarrow \mathcal{L}_{seg}(\hat{y}_i, y_i^t)$   $\theta \leftarrow \theta - \eta \nabla_{\theta} \ell$ end for

▷ Sample Task
▷ Sample Query
▷ Sample Support
▷ Augment Query
▷ Augment Support
▷ Task Aug
▷ Predict label map
▷ Compute loss
▷ Gradient step

![](_page_28_Figure_7.jpeg)

Among all training samples from that task

![](_page_28_Picture_9.jpeg)

UniverSeg

#### **In Context Learning**

#### How this is trained? (Hint: based on meta-learning or *learning-to-learn*)

Train Segmentation Tasks

![](_page_29_Picture_5.jpeg)

#### for $k = 1, \ldots$ , NumTrainSteps do $t \sim T$ ▷ Sample Task $(x_i^t, y_i^t) \sim t$ ▷ Sample Query $\begin{array}{l} S^t \leftarrow \{(x_j^t, y_j^t)\}_{j \neq i}^n \\ x_i^t, y_i^t \leftarrow \operatorname{Aug}_t(x_i^t, y_i^t) \end{array}$ ▷ Sample Support ▷ Augment Query $\begin{array}{l} S^t \leftarrow \{\operatorname{Aug}_t(x_j^t,y_j^t)\}_j^n \\ x_i^t, y_i^t, S^t \leftarrow \operatorname{Aug}_T(x_i^t,y_i^t,S^t) \end{array}$ ▷ Augment Support ▷ Task Aug $\hat{y}_i \leftarrow f_\theta(x_i^t, S^t)$ $\triangleright$ Predict label map $\ell \leftarrow \mathcal{L}_{\text{seg}}(\hat{y}_i, y_i^t)$ ⊳ Compute loss $\theta \leftarrow \theta - \eta \nabla_{\theta} \ell$ ▷ Gradient step end for

![](_page_29_Figure_7.jpeg)

**Images Augmentations** 

UniverSeg

#### **In Context Learning**

How this is trained? (Hint: based on meta-learning or *learning-to-learn*)

**Train Segmentation Tasks** 

![](_page_30_Picture_5.jpeg)

| for $k = 1, \ldots$ , NumTrainSteps do                        |                     |                        |
|---------------------------------------------------------------|---------------------|------------------------|
| $t\sim \mathcal{T}$                                           | ⊳ Sample Task       |                        |
| $(x_i^t,y_i^t) \sim t$                                        | ▷ Sample Query      |                        |
| $S^t \leftarrow \{(x_j^t, y_j^t)\}_{j  eq i}^n$               | ▷ Sample Support    |                        |
| $x_i^t, y_i^t \leftarrow \mathrm{Aug}_t(x_i^t, y_i^t)$        | ▷ Augment Query     |                        |
| $S^t \leftarrow \{\operatorname{Aug}_t(x_i^t, y_i^t)\}_i^n$   | Augment Support     |                        |
| $x_i^t, y_i^t, S^t \leftarrow 	ext{Aug}_T(x_i^t, y_i^t, S^t)$ | ⊳ Task Aug          |                        |
| $\hat{y}_i \leftarrow f_{\theta}(x_i^t, S^t)$                 | ▷ Predict label map |                        |
| $\ell \leftarrow \mathcal{L}_{\text{seg}}(\hat{y}_i, y_i^t)$  | ▷ Compute loss      | Standard (training)    |
| $	heta \leftarrow 	heta - \eta  abla_{	heta} \ell$            | ⊳ Gradient step     | forward-backward steps |
| end for                                                       |                     |                        |

![](_page_30_Figure_7.jpeg)

Butoi et al. Universeg: Universal medical image segmentation. ICCV'23.

UniverSeg

#### **In Context Learning**

#### And what about inference?

#### **Test Segmentation Tasks**

![](_page_31_Figure_5.jpeg)

![](_page_31_Figure_6.jpeg)

For a given image 
$$x^t$$
  $\hat{y} = f_{\theta}(x^t, S^t)$   
To make it more robust, multiple  $\hat{y} = \frac{1}{M} \sum_{m=1}^M f_{\theta}(x^t, S_m^t)$   
support sets are employed

#### **In Context Learning**

![](_page_32_Picture_2.jpeg)

- ightarrow Can tackle new tasks.
- $\rightarrow$  Does not require fine-tuning.
- $\rightarrow$  Promising performance.
- $\rightarrow$  So far binary scenario.
- $\rightarrow$  Performance below dataset-specific models.
- ightarrow Unclear implementation on large 3D data.
- ightarrow Requires continuously employing the support set.

![](_page_32_Figure_10.jpeg)

UniverSeg

#### **In Context Learning**

![](_page_33_Figure_2.jpeg)

Tyche

![](_page_34_Figure_0.jpeg)

Kirillov et al. Segment Anything. ICCV'23.

#### Interactive models ("SAM")

How this is trained?

![](_page_35_Figure_3.jpeg)

SAM
### Interactive models ("SAM")

How this is trained?



SAM

Interactive models ("SAM")

How this is trained?



SAM

### Interactive models ("SAM")

#### And what about inference?



**Remember: prompts on test data** 



### Interactive models ("SAM")



Fine-tuning SAM on an huge amount of medical data



Ma et al. Segment Anything in Medical Images. Nat.Com.'24.

Bounding box prompts

MedSAM

MedSAM

### Interactive models ("SAM")



### Interactive models ("SAM")





Gong et *al.* 3DSAM-adapter: Holistic Adaptation of SAM from 2D to 3D for Promptable Medical Image Segmentation. MedIA'24.

**3DSAM-Adapter** 



Fine-tuning SAM 2D via Parameter-Efficient Fine-Tuning to 3D

#### $\rightarrow$ Adapt for promptable version.

| Methods                                         | Dice ↑ | NSD ↑ |
|-------------------------------------------------|--------|-------|
| nnU-Net (Isensee et al., 2021)                  | 41.6   | 62.5  |
| 3D UX-Net (Lee et al., 2023)                    | 34.8   | 52.6  |
| SwinUNETR (Tang et al., 2022b)                  | 40.6   | 60.0  |
| nnFormer (Zhou et al., 2023a)                   | 36.5   | 54.0  |
| 3DSAM-adapter (automatic) (Gong et al., 2023)   | 30.2   | 45.4  |
| 3DSAM-adapter (10 pts/scan) (Gong et al., 2023) | 57.5   | 79.6  |
| MA-SAM (automatic)                              | 40.2   | 59.1  |
| MA-SAM (1 tight 3D bbx/scan)                    | 80.3   | 97.9  |
| MA-SAM (1 relaxed 3D bbx/scan)                  | 74.7   | 97.1  |



MA-SAM (3D)



Fine-tuning SAM 2D via Parameter-Efficient Fine-Tuning to 3D



#### $\rightarrow$ Adapt for zero-shot version (SAM as pre-trained representations).

| Methods                        | Spleen | R.Kd | L.Kd | GB   | Eso.    | Liver | Stomach | Aorta | IVC  | Veins | Pancreas | AG   | Average | _ |
|--------------------------------|--------|------|------|------|---------|-------|---------|-------|------|-------|----------|------|---------|---|
|                                |        |      |      | Dic  | æ [%] 1 |       |         |       |      |       |          |      |         | _ |
| nnU-Net (Isensee et al., 2021) | 97.0   | 95.3 | 95.3 | 63.5 | 77.5    | 97.4  | 89.1    | 90.1  | 88.5 | 79.0  | 87.1     | 75.2 | 86.3    | _ |
| 3D UX-Net (Lee et al., 2023)   | 94.6   | 94.2 | 94.3 | 59.3 | 72.2    | 96.4  | 73.4    | 87.2  | 84.9 | 72.2  | 80.9     | 67.1 | 81.4    |   |
| SwinUNETR (Tang et al., 2022b) | 95.6   | 94.2 | 94.3 | 63.6 | 75.5    | 96.6  | 79.2    | 89.9  | 83.7 | 75.0  | 82.2     | 67.3 | 83.1    |   |
| nnFormer (Zhou et al., 2023a)  | 93.5   | 94.9 | 95.0 | 64.1 | 79.5    | 96.8  | 90.1    | 89.7  | 85.9 | 77.8  | 85.6     | 73.9 | 85.6    |   |
| SAMed_h (Zhang and Liu, 2023)  | 95.3   | 92.1 | 92.9 | 62.1 | 75.3    | 96.4  | 90.2    | 87.6  | 79.8 | 74.2  | 77.9     | 61.0 | 82.1    |   |
| MA-SAM (Ours)                  | 96.7   | 95.1 | 95.4 | 68.2 | 82.1    | 96.9  | 92.8    | 91.1  | 87.5 | 79.8  | 86.6     | 73.9 | 87.2    |   |

**3D Adapter** 

+0.9%

MA-SAM (3D)

Interactive models ("SAM")

Training a 3D SAM with Medical data from Scratch



| Model     | Drompt             | Informa Time (a)     | Dice (%) |        |         |  |  |  |
|-----------|--------------------|----------------------|----------|--------|---------|--|--|--|
| Woder     | Frompt             | interence i inte (s) | Seen     | Unseen | Overall |  |  |  |
| SAM       | $N~{ m pts}$       | $N(\tau + 0.13)$     | 16.79    | 11.73  | 16.15   |  |  |  |
| SAM-Med2D | $N  \mathrm{pts}$  | $N(\tau + 0.04)$     | 38.91    | 22.55  | 36.83   |  |  |  |
| SAM-Med3D | $1 {\rm ~pt}$      | $	au{+}2$            | 81.98    | 37.02  | 76.27   |  |  |  |
| SAM       | 3N pts             | $3N(\tau + 0.19)$    | 34.61    | 15.94  | 32.24   |  |  |  |
| SAM-Med2D | 3N pts             | $3N(\tau + 0.07)$    | 51.46    | 29.70  | 48.70   |  |  |  |
| SAM-Med3D | 3  pts             | $_{3	au+3}$          | 84.14    | 43.80  | 79.02   |  |  |  |
| SAM       | 5N pts             | $5N(\tau + 0.25)$    | 49.39    | 21.86  | 45.89   |  |  |  |
| SAM-Med2D | 5N pts             | $5N(\tau + 0.10)$    | 51.89    | 30.41  | 49.17   |  |  |  |
| SAM-Med3D | 5  pts             | $5\tau+4$            | 84.62    | 46.26  | 79.75   |  |  |  |
| SAM-Med3D | $10 \mathrm{~pts}$ | $10	au{+}6$          | 85.19    | 49.92  | 80.71   |  |  |  |

### Interactive models ("SAM")

Training a 3D SAM with Medical data from Scratch



#### **1** point for each N slices

| $\setminus$                   |                                                                                                                                     |                                                                                |                           |                                                        |                           |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------|---------------------------|
| Model                         | Prompt                                                                                                                              | Inference Time (s)                                                             | Seen                      | Dice (%<br>Unseen                                      | %)<br>Overall             |
| SAM<br>SAM-Med2D<br>SAM-Med3D | $egin{array}{c} N \ { m pts} \ N \ { m pts} \ 1 \ { m pt} \end{array}$                                                              | $N(\tau + 0.13)$<br>$N(\tau + 0.04)$<br>$\tau + 2$                             | 16.79<br>38.91<br>81.98   | $\begin{array}{c} 11.73 \\ 22.55 \\ 37.02 \end{array}$ | $16.15 \\ 36.83 \\ 76.27$ |
| SAM<br>SAM-Med2D<br>SAM-Med3D | $\begin{array}{c} 3N \hspace{0.1 cm} \mathrm{pts} \\ 3N \hspace{0.1 cm} \mathrm{pts} \\ 3 \hspace{0.1 cm} \mathrm{pts} \end{array}$ | $\begin{array}{c} 3N(\tau + 0.19) \\ 3N(\tau + 0.07) \\ 3\tau + 3 \end{array}$ | $34.61 \\ 51.46 \\ 84.14$ | $15.94 \\ 29.70 \\ 43.80$                              | 32.24<br>48.70<br>79.02   |
| SAM<br>SAM-Med2D<br>SAM-Med3D | $\begin{array}{c} 5N \hspace{0.1 cm} \mathrm{pts} \\ 5N \hspace{0.1 cm} \mathrm{pts} \\ 5 \hspace{0.1 cm} \mathrm{pts} \end{array}$ | $5N(\tau + 0.25) 5N(\tau + 0.10) 5\tau + 4$                                    | 49.39<br>51.89<br>84.62   | $21.86 \\ 30.41 \\ 46.26$                              | 45.89<br>49.17<br>79.75   |
| SAM-Med3D                     | $10 \mathrm{~pts}$                                                                                                                  | $10	au{+}6$                                                                    | 85.19                     | 49.92                                                  | 80.71                     |

#### **Improved over 2D version**

### Interactive models ("SAM")



SAM is promptable (i.e., requires user interaction per EACH test image)



SAM only handles binary segmentation (one class at a time)

### Interactive models ("SAM")



SAM is promptable (i.e., requires user interaction per EACH test image)



SAM only handles binary segmentation (one class at a time)

Med-SAM3D

|                       |               | Tasl     | k-specific  |    | General-purpose |              |        |          |  |
|-----------------------|---------------|----------|-------------|----|-----------------|--------------|--------|----------|--|
| Dataset               | Modality      | UNETR [1 | 111 nnU-Net | 16 | SAM-Med2D       | 6 SegVol [8] | Ours   | Ours     |  |
|                       |               | onlin    | iij me itet | 10 | (N  pts)        | (pt+text)    | (1 pt) | (10 pts) |  |
| Totalsegmentator [36] | CT            | 75.05    | 85.22       |    | 38.26           | -            | 84.68  | 87.59    |  |
| KiTS21 [12]           | $\mathbf{CT}$ | 70.75    | 75.32       |    | 68.74           | -            | 72.06  | 75.37    |  |
| AMOS-CT 17            | CT            | 78.33    | 88.87       |    | 49.61           | -            | 79.94  | 83.99    |  |
| AMOS-MR [17]          | $\mathbf{MR}$ | 76.29    | 86.92       |    | 45.53           | -            | 75.41  | 81.13    |  |
| BTCV* [19]            | CT            | 78.99    | 81.92       |    | 50.05           | 73.81        | 79.17  | 83.01    |  |
| TDSC-ABUS23* [33]     | $US^*$        | -        | 45.08       |    | 49.39           | -            | 36.08  | 54.35    |  |

SAM yields sometimes lower results to taskspecific models

### Interactive models ("SAM")



SAM is promptable (i.e., requires user interaction per EACH test image)



SAM only handles binary segmentation (one class at a time)

Med-SAM3D

|                       |               | Task-specific |     |          |     | General-purpose |              |        |           |  |
|-----------------------|---------------|---------------|-----|----------|-----|-----------------|--------------|--------|-----------|--|
| Dataset               | Modality      | UNETR [11]    | lnn | II Not I | 16] | SAM-Med2D       | 6 SegVol [8] | Ours   | Ours      |  |
|                       |               | UNLIK [11]    | ,   | 0-net    | roj | (N  pts)        | (pt+text)    | (1 pt) | (10  pts) |  |
| Totalsegmentator [36] | CT            | 75.05         |     | 85.22    | Т   | 38.26           | -            | 84.68  | 87.59     |  |
| KiTS21 [12]           | $\mathbf{CT}$ | 70.75         | - 1 | 75.32    | L   | 68.74           | -            | 72.06  | 75.37     |  |
| AMOS-CT 17            | CT            | 78.33         | - 1 | 88.87    | L   | 49.61           | -            | 79.94  | 83.99     |  |
| AMOS-MR 17            | $\mathbf{MR}$ | 76.29         | - 1 | 86.92    | L   | 45.53           | -            | 75.41  | 81.13     |  |
| BTCV* [19]            | $\mathbf{CT}$ | 78.99         | - 1 | 81.92    | L   | 50.05           | 73.81        | 79.17  | 83.01     |  |
| TDSC-ABUS23* [33]     | $US^*$        | -             | L   | 45.08    |     | 49.39           | -            | 36.08  | 54.35     |  |

SAM yields sometimes lower results to taskspecific models



| Model                                | Prompt            | Inference Time (s) | Seen  | Dice (%<br>Unseen | %)<br>Overall |
|--------------------------------------|-------------------|--------------------|-------|-------------------|---------------|
|                                      |                   |                    |       |                   | 0.0101        |
| SAM                                  | $N  \mathrm{pts}$ | $N(\tau + 0.13)$   | 16.79 | 11.73             | 16.15         |
| SAM-Med2D                            | N  pts            | $N(\tau + 0.04)$   | 38.91 | 22.55             | 36.83         |
| SAM-Med3D                            | $1 {\rm ~pt}$     | $	au{+}2$          | 81.98 | 37.02             | 76.27         |
| SAM                                  | 3N pts            | $3N(\tau + 0.19)$  | 34.61 | 15.94             | 32.24         |
| SAM-Med2D                            | 3N pts            | $3N(\tau + 0.07)$  | 51.46 | 29.70             | 48.70         |
| ${\rm SAM}\text{-}{\rm Med3D}$       | $3  \mathrm{pts}$ | $3	au{+}3$         | 84.14 | 43.80             | 79.02         |
| SAM                                  | 5N pts            | $5N(\tau + 0.25)$  | 49.39 | 21.86             | 45.89         |
| SAM-Med2D                            | 5N pts            | $5N(\tau + 0.10)$  | 51.89 | 30.41             | 49.17         |
| ${\rm SAM}\text{-}{\rm Med}{\rm 3D}$ | 5  pts            | $5\tau+4$          | 84.62 | 46.26             | 79.75         |
| SAM-Med3D                            | 10  pts           | $10	au\!+\!6$      | 85.19 | 49.92             | 80.71         |
|                                      |                   |                    |       |                   |               |

Iterative random points over the error region (explicit access to GT)

### Interactive models ("SAM")

Applications in Active Learning / Annotations



Kulkarni et *al*. Anytime, Anywhere, Anyone: Investigating the Feasibility of SAM for Crowd-Sourcing Medical Image Annotations. MIDL'24.

# Foundation models for medical image segmentation



#### **Organizing the mess!**

- 1. Types of foundation models: a data perspective.
  - A. Generalist vs. Specialized
  - B. 2D vs. 3D
  - C. Multimodal vs. Unimodal
- 2. Learning/Usage Objectives
  - A. Zero-shot / Transfer Learning
  - B. In-Context Learning
  - C. Interactive Models ("SAM")
- 3. Zero-shot / Adaptation-oriented (3D data)
  - A. How to pre-train?
  - B. How useful are foundation models? Limitations on the adaptation stage
  - C. Few-shot Parameter-Efficient Fine-tuning

#### **Zero-shot / Transfer Learning**



Ulrich et *al*. MultiTalent: A Multi-Dataset Approach to Medical Image Segmentation. MICCAI'23.

Med3D('19)



#### Why volumetric (and mostly CT)?

Ulrich et *al*. MultiTalent: A Multi-Dataset Approach to Medical Image Segmentation. MICCAI'23.

| Datasets                  | # Targets | # Scans | Annotated Organs or Tumors                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------|-----------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Pancreas-CT [62]       | 1         | 82      | Pancreas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2. LiTS [3]               | 2         | 201     | Liver, Liver Tumor*                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3. KiTS [25]              | 2         | 300     | Kidney, Kidney Tumor*                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4. AbdomenCT-1K [45]      | 4         | 1,000   | Spleen, Kidney, Liver, Pancreas                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5. CT-ORG [60]            | 4         | 140     | Lung, Liver, Kidneys and Bladder                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6. CHAOS [73]             | 4         | 40      | Liver, Left Kidney, Right Kidney, Spl                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7-11. MSD CT Tasks [1]    | 9         | 947     | Spl, Liver and Tumor*, Lung Tumor*, Colon Tumor*, Pan and Tumor*, Hepatic Vessel and Tumor*                                                                                                                                                                                                                                                                                                                                                                                              |
| 12. BTCV [37]             | 13        | 50      | Spl, RKid, LKid, Gall, Eso, Liv, Sto, Aor, IVC, R&SVeins, Pan, RAG, LAG                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 13. AMOS22 [32]           | 15        | 500     | Spl, RKid, LKid, Gall, Eso, Liv, Sto, Aor, IVC, Pan, RAG, LAG, Duo, Bla, Pro/UTE                                                                                                                                                                                                                                                                                                                                                                                                         |
| 14. WORD [44]             | 16        | 150     | Spl, RKid, LKid, Gall, Eso, Liv, Sto, Pan, RAG, Duo, Col, Int, Rec, Bla, LFH, RFH                                                                                                                                                                                                                                                                                                                                                                                                        |
| 15. 3D-IRCADb [67]        | 13        | 20      | Liv, Liv Cyst, RLung, LLung, Venous, PVein, Aor, Spl, RKid, LKid, Gall, IVC                                                                                                                                                                                                                                                                                                                                                                                                              |
| 16. TotalSegmentator [79] | 104       | 1,024   | Clavicula, Humerus, Scapula, Rib 1-12, Vertebrae C1-7, Vertebrae T1-9, Vertebrae L1-5, Hip,<br>Sacrum, Femur, Aorta, Pulmonary Artery, Right Ventricle, Right Atrium, Left Atrium, Left Ventri-<br>cle, Myocardium, PVein, SVein, IVC, Iliac Artery, Iliac Vena, Brain, Trachea, Lung Upper Lobe,<br>Lung Middle Lobe, Lung Lower Lobe, AG, Spl, Liv, Gall, Pan, Kid, Eso, Sto, Duo, Small Bowel,<br>Colon, Bla, Autochthon, Iliopsoas, Gluteus Minimus, Gluteus Medius, Gluteus Maximus |
| 17. JHH (private)         | 21        | 5,038   | Aor, AG, CBD, Celiac AA, Colon, duo, Gall, IVC, Lkid, RKid, Liv, Pan, Pan Duct, SMA, Small bowel, Spl, Sto, Veins, Kid LtRV, Kid RtRV, CBD Stent, PDAC*, PanNET*, Pancreatic Cyst*                                                                                                                                                                                                                                                                                                       |

Liu et *al*. CLIP-Driven Universal Model for Organ Segmentation and Tumor Detection. ICCV'23.

Med3D('19)

**CLIP-Driven** 

MultiTalent

UniSeg

**SuPreM** 



#### Why volumetric (and mostly CT)?

Ulrich et *al*. MultiTalent: A Multi-Dataset Approach to Medical Image Segmentation. MICCAI'23.

#### $\rightarrow$ A good number of annotated scans publicly available. (current models are pre-trained with 2K CTs)

ightarrow Anatomical morphology is natural 3D.

 $\rightarrow$  Labeling at voxel level is tremendously costly for practitioners.

#### (10 min per structure according to TotalSegmentator).

 $\rightarrow$  Enormous potential of FMs to address inter-center, inter-scan and demographics variabilities.

| Datasets                  | # Targets | # Scans | Annotated Organs or Tumors                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------|-----------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Pancreas-CT [62]       | 1         | 82      | Pancreas                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2. LiTS [3]               | 2         | 201     | Liver, Liver Tumor*                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3. KiTS [25]              | 2         | 300     | Kidney, Kidney Tumor*                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4. AbdomenCT-1K [45]      | 4         | 1,000   | Spleen, Kidney, Liver, Pancreas                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5. CT-ORG [60]            | 4         | 140     | Lung, Liver, Kidneys and Bladder                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6. CHAOS [73]             | 4         | 40      | Liver, Left Kidney, Right Kidney, Spl                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7-11. MSD CT Tasks [1]    | 9         | 947     | Spl, Liver and Tumor*, Lung Tumor*, Colon Tumor*, Pan and Tumor*, Hepatic Vessel and Tumor*                                                                                                                                                                                                                                                                                                                                                                                |
| 12. BTCV [37]             | 13        | 50      | Spl, RKid, LKid, Gall, Eso, Liv, Sto, Aor, IVC, R&SVeins, Pan, RAG, LAG                                                                                                                                                                                                                                                                                                                                                                                                    |
| 13. AMOS22 [32]           | 15        | 500     | Spl, RKid, LKid, Gall, Eso, Liv, Sto, Aor, IVC, Pan, RAG, LAG, Duo, Bla, Pro/UTE                                                                                                                                                                                                                                                                                                                                                                                           |
| 14. WORD [44]             | 16        | 150     | Spl, RKid, LKid, Gall, Eso, Liv, Sto, Pan, RAG, Duo, Col, Int, Rec, Bla, LFH, RFH                                                                                                                                                                                                                                                                                                                                                                                          |
| 15. 3D-IRCADb [67]        | 13        | 20      | Liv, Liv Cyst, RLung, LLung, Venous, PVein, Aor, Spl, RKid, LKid, Gall, IVC                                                                                                                                                                                                                                                                                                                                                                                                |
| 16. TotalSegmentator [79] | 104       | 1,024   | Clavicula, Humerus, Scapula, Rib 1-12, Vertebrae C1-7, Vertebrae T1-9, Vertebrae L1-5, Hip, Sacrum, Femur, Aorta, Pulmonary Artery, Right Ventricle, Right Atrium, Left Atrium, Left Ventricle, Myocardium, PVein, SVein, IVC, Iliac Artery, Iliac Vena, Brain, Trachea, Lung Upper Lobe, Lung Middle Lobe, Lung Lower Lobe, AG, Spl, Liv, Gall, Pan, Kid, Eso, Sto, Duo, Small Bowel, Colon, Bla, Autochthon, Iliopsoas, Gluteus Minimus, Gluteus Medius, Gluteus Maximus |
| 17. JHH (private)         | 21        | 5,038   | Aor, AG, CBD, Celiac AA, Colon, duo, Gall, IVC, Lkid, RKid, Liv, Pan, Pan Duct, SMA, Small bowel, Spl, Sto, Veins, Kid LtRV, Kid RtRV, CBD Stent, PDAC*, PanNET*, Pancreatic Cyst*                                                                                                                                                                                                                                                                                         |

### Liu et *al*. CLIP-Driven Universal Model for Organ Segmentation and Tumor Detection. ICCV'23.

CLIP-Driven MultiTalent UniSeg SuPreM

Med3D('19)

#### **Challenges of Dataset Assembling**

#### **Partially-labeled datasets**



#### **Inconsistent annotation protocols**



Liu et al. CLIP-Driven Universal Model for Organ Segmentation and Tumor Detection. ICCV'23.



**CLIP-Driven** 

Med3D('19)

UniSeg

SuPreM

MultiTalent



How to pre-train? Standard



Assembly Dataset with Partial Labels

 $\mathcal{D}_T = \{ (\mathbf{X}_n, \mathbf{Y}_n, \mathbf{w}_n) \}_{n=1}^N$ 





Dataset A: kidney Dataset B: spleen



**Dataset D: liver** 

Silva-Rodríguez et al. Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation. MICCAI W-MedAGI'23 (Extension Under Review).



MultiTalent



Dataset A: kidney Dataset B: spleen

**Dataset D: liver** 

MultiTalent



MultiTalent



How to pre-train? Standard



**FSEFT** 

1. Forward Encoder-Decoder

 $\mathbf{Z}_n = \theta_f(\mathbf{X}_n)$ 

Assembly Dataset with Partial Labels

 $\mathcal{D}_T = \{ (\mathbf{X}_n, \mathbf{Y}_n, \mathbf{w}_n) \}_{n=1}^N$ 





Dataset A: kidney Dataset B: spleen



Silva-Rodríguez et al. Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation. MICCAI W-MedAGI'23 (Extension Under Review).



#### How to pre-train? Standard

1. Forward Encoder-Decoder

 $\mathbf{Z}_n = \theta_f(\mathbf{X}_n)$ 

Assembly Dataset with Partial Labels

 $\mathcal{D}_T = \{ (\mathbf{X}_n, \mathbf{Y}_n, \mathbf{w}_n) \}_{n=1}^N$ 





Dataset A: kidney Dataset B: spleen





**Dataset D: liver** 

2. Forward Classifier + Sigmoid activation

$$\hat{\mathbf{Y}}_n = \sigma(\theta_c(\mathbf{Z}_n))$$

Disentangle prediction for each task (softmax might affect notannotated categories)

MultiTalent



#### Assembly Dataset with Partial Labels

$$\mathcal{D}_T = \{(\mathbf{X}_n, \mathbf{Y}_n, \mathbf{w}_n)\}_{n=1}^N$$





Dataset A: kidney Dataset B: spleen

et B: spleen



#### **Dataset D: liver**

How to pre-train? Standard

1. Forward Encoder-Decoder

 $\mathbf{Z}_n = \theta_f(\mathbf{X}_n)$ 

2. Forward Classifier + Sigmoid activation

 $\hat{\mathbf{Y}}_n = \sigma(\theta_c(\mathbf{Z}_n))$ 

3. Compute any masked segmentation loss, and update

$$\min_{\theta_f,\theta_c} \quad \frac{1}{\sum_k \mathbf{w}_{n,k}} \sum_k \mathbf{w}_{n,k} \mathcal{L}_{SEG}(\mathbf{Y}_{n,k}, \hat{\mathbf{Y}}_{n,k}), \quad n = 1, ..., N$$

### Silva-Rodríguez et *al.* Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation. MICCAI W-MedAGI'23 (Extension Under Review).

MultiTalent



#### Assembly Dataset with Partial Labels

$$\mathcal{D}_T = \{(\mathbf{X}_n, \mathbf{Y}_n, \mathbf{w}_n)\}_{n=1}^N$$





Dataset A: kidney Dataset B: spleen



#### **Dataset D: liver**

How to pre-train? Standard

1. Forward Encoder-Decoder

 $\mathbf{Z}_n = \theta_f(\mathbf{X}_n)$ 

2. Forward Classifier + Sigmoid activation

 $\hat{\mathbf{Y}}_n = \sigma(\theta_c(\mathbf{Z}_n))$ 

3. Compute any masked segmentation loss, and update

$$L = \sum_{c} \left( \mathbb{1}_{c}^{(k)} \frac{1}{I} \sum_{z} BCE(\hat{y}_{z,c}^{(k)}, y_{z,c}^{(k)}) - \frac{2 \sum_{z} \mathbb{1}_{c}^{(k)} \hat{y}_{z,c}^{(k)} y_{z,c}^{(k)}}{\sum_{z} \mathbb{1}_{c}^{(k)} \hat{y}_{z,c}^{(k)} + \sum_{z} \mathbb{1}_{c}^{(k)} y_{z,c}^{(k)}} \right)$$

#### Ulrich et al. MultiTalent: A Multi-Dataset Approach to Medical Image Segmentation. MICCAI'23.

MultiTalent

#### How to pre-train? CLIP-Driven

**SuPreM** 

**CLIP-Driven** 

#### Main idea



#### How to pre-train? CLIP-Driven

SuPreM

**CLIP-Driven** 



How to pre-train? CLIP-Driven

SuPreM

**CLIP-Driven** 



#### How to pre-train? CLIP-Driven

SuPreM

**CLIP-Driven** 

Text branch (generates text embedding for class k)

 $\mathbf{w}_k$ 



#### How to pre-train? CLIP-Driven

Text branch

(generates text embedding for class k)

 $\mathbf{w}_k$ 

Visual branch-encoder (generates visual embedding for volume x)



**CLIP-Driven** 

SuPreM

#### How to pre-train? CLIP-Driven

Text branch

(generates text embedding for class k)

 $\mathbf{w}_k$ 

Visual branch-encoder (generates visual embedding for volume x)

Text-based controller MLP (generates class parameters)

$$oldsymbol{ heta}_{k} = MLP(\mathbf{w}_{k} \oplus \mathbf{f})$$
  
 $oldsymbol{ heta}_{k} = \{oldsymbol{ heta}_{k_{1}}, oldsymbol{ heta}_{k_{2}}, oldsymbol{ heta}_{k_{3}}\}$ 



**CLIP-Driven** 

SuPreM

#### How to pre-train? CLIP-Driven

Text branch

(generates text embedding for class k)

 $\mathbf{w}_k$ 

Visual branch-encoder (generates visual embedding for volume x)

Text-based controller MLP (generates class parameters)

$$oldsymbol{ heta}_{k} = MLP(\mathbf{w}_{k} \oplus \mathbf{f})$$
  
 $oldsymbol{ heta}_{k} = \{oldsymbol{ heta}_{k_{1}}, oldsymbol{ heta}_{k_{2}}, oldsymbol{ heta}_{k_{3}}\}$ 

Visual branch-decoder (generates visual embedding for image x)

$$\mathbf{P}_k = \operatorname{sigmoid}(((\mathbf{F} \ast \boldsymbol{\theta}_{k_1}) \ast \boldsymbol{\theta}_{k_2}) \ast \boldsymbol{\theta}_{k_3})$$

public datasets



**CLIP-Driven** 

#### How to pre-train? CLIP-Driven

Text branch

(generates text embedding for class k)

 $\mathbf{W}_k$ 

Visual branch-encoder (generates visual embedding for volume x)

Text-based controller MLP (generates class parameters)

$$oldsymbol{ heta}_{k} = MLP(\mathbf{w}_{k} \oplus \mathbf{f})$$
  
 $oldsymbol{ heta}_{k} = \{oldsymbol{ heta}_{k_{1}}, oldsymbol{ heta}_{k_{2}}, oldsymbol{ heta}_{k_{3}}\}$ 

Visual branch-decoder (generates visual embedding for image x)

$$\mathbf{P}_k = \mathrm{sigmoid}(((\mathbf{F} * oldsymbol{ heta}_{k_1}) * oldsymbol{ heta}_{k_2}) * oldsymbol{ heta}_{k_3})$$

Training loss

$$\mathcal{L} = \sum_{k=1}^{K} \mathbf{1}_{\{k \in y\}} \cdot \mathrm{BCE}_k$$

Liu et al. CLIP-Driven Universal Model for Organ Segmentation and Tumor Detection. ICCV'23.

**CLIP-Driven** 

SuPreM


#### How to pre-train? CLIP-Driven

Text branch

(generates text embedding for class k)

 $\mathbf{W}_k$ 

Visual branch-encoder (generates visual embedding for volume x)

Text-based controller MLP (generates class parameters)

$$oldsymbol{ heta}_{k} = MLP(\mathbf{w}_{k} \oplus \mathbf{f})$$
  
 $oldsymbol{ heta}_{k} = \{oldsymbol{ heta}_{k_{1}}, oldsymbol{ heta}_{k_{2}}, oldsymbol{ heta}_{k_{3}}\}$ 

Visual branch-decoder (generates visual embedding for image x)

$$\mathcal{L} = \sum_{k=1}^{K} \mathbf{1}_{\{k \in y\}} \cdot \mathrm{BCE}_{k}$$

#### $\rightarrow$ How can the text part contribute if using a generalist model?

A photo of a [CLS].

ssing

dataset 1

dataset 14 public datasets Enc.

#### Liu et al. CLIP-Driven Universal Model for Organ Segmentation and Tumor Detection. ICCV'23.





MLP

**CLIP-Driven** 

 $\theta_{\rm pancreas}$ 

#### How to pre-train? Prompt-Driven

### Main idea



Ye et *al.* UniSeg: A Prompt-driven Universal Segmentation Model as well as A Strong Representation Learner. MICCAI'23.

- **Objective**: condition the segmentation to high level features related to **tasks/domains.** 

- **Prompt selection** is a learnable operations to operate during **inference**.



Gao et *al*. Training Like a Medical Resident: Context-Prior Learning Toward Universal Medical Image Segmentation. CVPR'24.

UniSeg

Hermes

#### **Zero-shot / Adaptation Oriented (3D Data)** UniSeg How to pre-train? Prompt-Driven Hermes Main idea Conditioning on decoder path Conditioning on FUSE Module classifier Task ID T Predictions Universal Prompt FUSE Module Task-specific P ample-specific Features Posterior Prototypes MLP $\hat{p}_{t}$ MR Datasets $\hat{p}_{m} \odot$ $\left[\hat{oldsymbol{p}}_{oldsymbol{t}_k},\hat{oldsymbol{p}}_{m_k} ight]$ Prompt-driven $|t_{\star}| \times C'$ $l \times C'$ Vision Encoder Decoder $y_{mod}$ Concatenation Modality Prior $' \times D' \times H' \times W'$ Predictions CT&PET Dataset CT&PET Prediction Fusion $|\mathcal{M}| \times 1$ Ye et al. UniSeg: A Prompt-driven Universal Segmentation Model as well as **▲** ▲ Χ Â Ð $L_{mod}$ A Strong Representation Learner. MICCAI'23. Prior Selection $[\boldsymbol{p}_{t_k}, \boldsymbol{p}_{m_k}]$ Binary Mask Predictions $|\mathbf{t}_{+}| \times D' \times H' \times W'$ 000 **Context Prior**

Gao et *al*. Training Like a Medical Resident: Context-Prior Learning Toward Universal Medical Image Segmentation. CVPR'24.

Modality  $oldsymbol{p}_{\mathcal{M}}$ 

Task  $oldsymbol{p}_{\mathcal{T}}$ 

Pool

 $L_{seq}$ 

#### How to pre-train? Prompt-Driven





Prompt Similarity among tasks

UniSeg

Hermes

| Setting  | Model                 | 1%    |       | 10%   |       | 50%   |       | 100%  |       |
|----------|-----------------------|-------|-------|-------|-------|-------|-------|-------|-------|
|          |                       | Pan   | Tumor | Pan   | Tumor | Pan   | Tumor | Pan   | Tumor |
| Scratch  | ResUNet               | 44.60 | 7.67  | 74.47 | 23.90 | 78.89 | 44.52 | 80.45 | 51.06 |
|          | ResUNet (AMOS CT)     | 56.08 | 8.31  | 77.15 | 25.53 | 80.53 | 46.16 | 81.23 | 52.21 |
|          | ResUNet (KiTS)        | 52.68 | 9.28  | 75.11 | 27.33 | 79.07 | 45.72 | 79.23 | 50.64 |
|          | DeSD [60] (10,594 CT) | 67.82 | 13.89 | 78.11 | 35.82 | 80.95 | 50.23 | 81.97 | 59.11 |
| Transfer | DoDNet [63]           | 66.62 | 11.97 | 76.83 | 31.92 | 80.82 | 47.79 | 81.41 | 53.62 |
|          | CLIP-Driven [44]      | 67.95 | 12.12 | 77.49 | 32.37 | 80.92 | 48.92 | 81.45 | 54.71 |
|          | UniSeg [61]           | 69.05 | 12.35 | 77.33 | 33.87 | 80.93 | 49.63 | 81.96 | 55.58 |
|          | Hermes-R              | 72.71 | 16.73 | 79.12 | 44.31 | 81.14 | 55.31 | 82.73 | 61.41 |

### Gao et *al*. Training Like a Medical Resident: Context-Prior Learning Toward Universal Medical Image Segmentation. CVPR'24.

#### How to pretrain? Self-supervised pre-training

 $\rightarrow$  Producing quality annotations in volumetric scans is expensive and laborious.

 $\rightarrow$  Large amounts of unlabeled data are available. (current self-supervised models are pre-trained with more than 5000 CT scans)

#### $\rightarrow$ Different pretext tasks.



Xie et *al.* UniMiSS: Universal Medical Self-Supervised Learning via Breaking Dimensionality Barrier. ECCV'22.



Zhou et al. Model Genesis. MedIA'21.



Tang et *al.* Self-Supervised Pre-Training of Swin Transformers for 3D Medical Image Analysis. CVPR'22.

#### **Benefits of foundation models?**

- $\rightarrow$  Transferability via **full fine-tuning** of the pre-trained model.
- → Access to hundreds of labeled volumes for adaptation.

|                     | name                                                                                                                                               | backbone                                                           | params                                         | pre-trained data                                                                                 | performance                          | e†                |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------|-------------------|
|                     | Models Genesis (Zhou et al., 2019)<br>UniMiSS (Xie et al., 2022)                                                                                   | U-Net<br>nnU-Net                                                   | 19.08M<br>61.79M                               | 623 CT volumes<br>5,022 CT&MRI volumes                                                           | 90.1<br>92.9                         |                   |
| self-<br>supervised | NV*<br>NV*<br>NV (Tang et al., 2022)<br>NV*<br>NV*                                                                                                 | Swin UNETR<br>Swin UNETR<br>Swin UNETR<br>Swin UNETR<br>Swin UNETR | 62.19M<br>62.19M<br>62.19M<br>62.19M<br>62.19M | 1,000 CT volumes<br>3,000 CT volumes<br>5,050 CT volumes<br>5,050 CT volumes<br>9,262 CT volumes | 93.2<br>93.4<br>93.8<br>94.2<br>94.3 |                   |
| supervised          | Med3D (Chen et al., 2019b)<br>DoDNet (Zhang et al., 2021)<br>DoDNet*<br>Universal Model (Liu et al., 2023b)<br>Universal Model (Liu et al., 2023b) | Residual U-Net<br>U-Net<br>U-Net<br>U-Net<br>Swin UNETR            | 85.75M<br>17.29M<br>17.29M<br>19.08M<br>62.19M | 1,638 CT volumes<br>920 CT volumes<br>920 CT volumes<br>2,100 CT volumes<br>2,100 CT volumes     | 91.4<br>93.8<br>94.4<br>-<br>94.1    | <mark>+0.8</mark> |
| ·                   | SuPreM*<br>SuPreM*<br>SuPreM*                                                                                                                      | U-Net<br>Swin UNETR<br>SegResNet                                   | 19.08M<br>62.19M<br>470.13M                    | 2,100 CT volumes<br>2,100 CT volumes<br>2,100 CT volumes                                         | <b>95.4</b><br>94.6<br>94.0          |                   |

Li et al. How Well Do Supervised 3D Models Transfer to Medical Imaging Tasks?. ICLR'24.

#### <mark>3%</mark>

Ulrich et al. MultiTalent: A Multi-Dataset Approach to Medical Image Segmentation. MICCAI'23.

SuPreM

MultiTalent



all datasets (n=13)

#### **Benefits of foundation models?**

- $\rightarrow$  Transferability via **full fine-tuning** of the pre-trained model.
- → Access to hundreds of labeled volumes for adaptation.



|             | name                                | backbone       | params  | pre-trained data     | performance <sup>†</sup> |
|-------------|-------------------------------------|----------------|---------|----------------------|--------------------------|
|             | Models Genesis (Zhou et al., 2019)  | U-Net          | 19.08M  | 623 CT volumes       | 90.1                     |
|             | UniMiSS (Xie et al., 2022)          | nnU-Net        | 61.79M  | 5,022 CT&MRI volumes | 92.9                     |
| self-       | NV*                                 | Swin UNETR     | 62.19M  | 1,000 CT volumes     | 93.2                     |
| supervised  | NV*                                 | Swin UNETR     | 62.19M  | 3,000 CT volumes     | 93.4                     |
|             | NV (Tang et al., 2022)              | Swin UNETR     | 62.19M  | 5,050 CT volumes     | 93.8                     |
|             | NV*                                 | Swin UNETR     | 62.19M  | 5,050 CT volumes     | 94.2                     |
|             | NV*                                 | Swin UNETR     | 62.19M  | 9,262 CT volumes     | 94.3                     |
|             | Med3D (Chen et al., 2019b)          | Residual U-Net | 85.75M  | 1,638 CT volumes     | 91.4                     |
|             | DoDNet (Zhang et al., 2021)         | U-Net          | 17.29M  | 920 CT volumes       | 93.8                     |
|             | DoDNet*                             | U-Net          | 17.29M  | 920 CT volumes       | 94.4                     |
| superv ised | Universal Model (Liu et al., 2023b) | U-Net          | 19.08M  | 2,100 CT volumes     | -                        |
| -           | Universal Model (Liu et al., 2023b) | Swin UNETR     | 62.19M  | 2,100 CT volumes     | 94.1                     |
|             | SuPreM*                             | U-Net          | 19.08M  | 2,100 CT volumes     | 95.4                     |
|             | SuPreM*                             | Swin UNETR     | 62.19M  | 2,100 CT volumes     | 94.6                     |
|             | SuPreM*                             | SegResNet      | 470.13M | 2,100 CT volumes     | 94.0                     |

Li et *al*. How Well Do Supervised 3D Models Transfer to Medical Imaging Tasks?. ICLR'24.

Ulrich et *al*. MultiTalent: A Multi-Dataset Approach to Medical Image Segmentation. MICCAI'23. SuPreM

MultiTalent

all datasets (n=13)

SuPreM

#### **Benefits of foundation models**

 $\rightarrow$  SuPreM models are pre-trained on a curated dataset with 25 fully-annotated structures.

Li et al. AdbomenAtlas: A Large Scale Detailed Annotated and Multi Center Dataset for Efficient Transfer Learning and Open Algorithmic Benchmarking. MedIA'24.

ightarrow Supervised pre-training is orders of magnitude more data-efficient than self-supervision.

ightarrow This holds even when transferring to unseen structures.



### Li et *al*. How Well Do Supervised 3D Models Transfer to Medical Imaging Tasks?. ICLR'24.



#### **Few-Shot Efficient Fine-Tuning**

Main idea (how to adapt a pre-trained large-scale model efficiently)





#### **Few-Shot Efficient Fine-Tuning**

Main idea (how to adapt a pre-trained large-scale model efficiently)





#### **Few-Shot Efficient Fine-Tuning**

Main idea (how to adapt a pre-trained large-scale model efficiently)



Being computationally efficient, allowing for commodity GPUs

### **Few-Shot Efficient Fine-Tuning**

**Black-box Adapters** 



### **Few-Shot Efficient Fine-Tuning**

**Black-box Adapters** 



**FSEFT** 

85

Support Volumes

for Volumetric Organ Segmentation. MICCAI W-MedAGI'23 (Extension Under Review).

**Few-Shot Efficient Fine-Tuning** 

### Parameter-Efficient Fine-Tuning



Silva-Rodríguez et *al.* Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation. MICCAI W-MedAGI'23 (Extension Under Review).

**FSEFT** 

#### **Few-Shot Efficient Fine-Tuning**

### Parameter-Efficient Fine-Tuning





**FSEFT** 

#### **Few-Shot Efficient Fine-Tuning**

### Parameter-Efficient Fine-Tuning





**Few-Shot Efficient Fine-Tuning** 

Transferability to known tasks (domain shift)



Silva-Rodríguez et *al.* Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation. MICCAI W-MedAGI'23 (Extension Under Review).

**Few-Shot Efficient Fine-Tuning** 

Transferability to known tasks (domain shift)



Silva-Rodríguez et *al.* Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation. MICCAI W-MedAGI'23 (Extension Under Review).

#### **Few-Shot Efficient Fine-Tuning**

### Transferability to known tasks (domain shift)



Silva-Rodríguez et *al.* Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation. MICCAI W-MedAGI'23 (Extension Under Review).

**Few-Shot Efficient Fine-Tuning** 

Transferability to known tasks (domain shift)



Silva-Rodríguez et *al.* Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation. MICCAI W-MedAGI'23 (Extension Under Review).

**FSEFT** 

#### **Few-Shot Efficient Fine-Tuning**

### Transferability to known tasks (domain shift)

| Setti    | ing         | Method                                                                                                                                                                | Spl                                                | lKid                                               | Gall                                               | Eso                                                | Liv                                                | Pan                                                | Sto                                                | Duo                                                | Aor                                                | Avg.                                               |
|----------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| 5-shot - | PEFT        | CNN-Adapter (Rebuffi et al.) 2018)<br>Bias (Cai et al.) 2020)<br>Affine-BN (Frankle et al.) 2021)                                                                     | 47.69<br>71.16<br>69.22                            | 39.58<br>69.54<br>72.33                            | 40.52<br>70.16<br>65.66                            | 53.05<br>55.86<br>52.68                            | 55.08<br>71.03<br>67.61                            | 43.17<br>79.60<br>75.50                            | 28.47<br>51.25<br>45.08                            | 35.73<br>69.04<br>66.52                            | 84.62<br>88.92<br>86.94                            | 47.55<br>69.62<br>66.84                            |
|          | BB          | Spatial Adapter                                                                                                                                                       | 93.91<br>91.78                                     | 75.59                                              | 80.89                                              | 50.50<br>52.30                                     | 80.29<br>90.00                                     | 68.19<br>78.83                                     | 57.18<br>83.27                                     | 80.37                                              | 88.48<br>89.08                                     | 74.14<br>80.47                                     |
| 10-shot  | PEFT<br>BB  | CNN-Adapter (Rebuffi et al.) 2018)<br>Bias (Cai et al.) (2020)<br>Affine-BN (Frankle et al.) 2021)<br>Linear Probe<br>Spatial Adapter                                 | 57.32<br>72.79<br>72.15<br>91.22<br>95.40          | 61.79<br>76.14<br>74.06<br>75.63<br>83.76          | 42.96<br>83.37<br>77.15<br>77.48<br>81.29          | $55.61$ $59.65$ $-\frac{58.65}{50.02}$ $52.49$     | 52.21<br>73.97<br>72.31<br>80.87<br>90.75          | 52.77<br>79.68<br>77.08<br>69.17<br>78.57          | 39.96<br>60.65<br>61.74<br>56.28<br>81.97          | 34.97<br>73.46<br>63.94<br>77.63<br>81.09          | 89.26<br>92.80<br>92.43<br>85.29<br>90.33          | 54.09<br>74.72<br>72.17<br>73.73<br>81.74          |
|          | (a) 3D-UNet |                                                                                                                                                                       |                                                    |                                                    |                                                    |                                                    |                                                    |                                                    |                                                    |                                                    |                                                    |                                                    |
| Set      | ting        | Method                                                                                                                                                                | Spl                                                | lKid                                               | Gall                                               | Eso                                                | Liv                                                | Pan                                                | Sto                                                | Duo                                                | Aor                                                | Avg.                                               |
| 5-shot   | PEFT<br>BB  | BitFit (Ben-Zaken et al.) [2021)<br>LoRA (Hu et al.) [2022)<br>AdaptFormer (Chen et al.) [2022a)<br>Affine-LN (Basu et al.) [2024)<br>Linear Probe<br>Spatial Adapter | 88.76<br>61.31<br>87.57<br>88.14<br>94.62<br>95.34 | 85.91<br>46.52<br>86.05<br>83.81<br>91.86<br>88.13 | 79.42<br>52.50<br>60.17<br>76.10<br>82.98<br>85.08 | 50.22<br>46.43<br>51.79<br>50.04<br>49.29<br>55.56 | 92.17<br>80.50<br>90.11<br>91.89<br>93.54<br>94.27 | 73.64<br>66.86<br>76.73<br>75.46<br>78.86<br>78.84 | 62.81<br>38.66<br>68.29<br>64.41<br>72.43<br>75.33 | 69.30<br>54.15<br>74.49<br>71.91<br>77.30<br>78.17 | 90.82<br>73.33<br>93.12<br>90.91<br>88.77<br>87.40 | 77.01<br>57.81<br>76.48<br>76.96<br>81.07<br>82.01 |
| 10-shot  | PEFT        | BitFit (Ben-Zaken et al.) 2021)<br>LoRA (Hu et al.) 2022)<br>AdaptFormer (Chen et al.) 2022a)<br>Affine-LN (Basu et al.) 2024)<br>Linear Probe                        | 95.16<br>63.97<br>91.36<br>87.21<br>95.26          | 86.54<br>54.53<br>84.03<br>87.36<br>91.63          | 84.86<br>59.25<br>77.78<br>80.84<br>82.15          | 56.93<br>55.33<br>54.10<br>55.80<br>52.69          | 93.58<br>84.03<br>93.14<br>93.65<br>93.37          | 72.03<br>77.72<br>76.05<br>76.98<br>69.93          | 69.26<br>58.72<br>70.08<br>66.78<br>71.70          | 75.47<br>73.89<br>77.58<br>75.66<br>77.20          | 90.44<br>80.59<br>93.25<br>92.50<br>88.70          | 80.47<br>67.56<br>79.71<br>79.64<br>80.29          |
|          | BB          | Spatial Adapter                                                                                                                                                       | 95.83                                              | 89.44                                              | 81.61                                              | 56.24                                              | 94.40                                              | 77.69                                              | 76.03                                              | 79.54                                              | 84.66                                              | 81.72                                              |

#### Black-box methods hold their performance when directly applied to SuPreM models

#### **Few-Shot Efficient Fine-Tuning**

Transferability to novel tasks (new organs)

| Setting | Method                            | Lung*  | Heart <sup>†</sup> | Gluteus <sup>‡</sup> | Avg.  |
|---------|-----------------------------------|--------|--------------------|----------------------|-------|
| THE I   | Fine-tuning (Tang et al., 2022)   | 19.59  | 53.14              | 55.37                | 42.70 |
| FULL    | Fine-tuning (Ours)                | 31.01  | 60.79              | 65.35                | 52.38 |
|         | BitFit (Ben-Zaken et al., 2021)   | 714.79 | 48.90              | 39.43                | 34.28 |
|         | LoRA (Hu et al., 2022)            | 13.80  | 50.55              | 46.36                | 38.49 |
| DEEE    | AdaptFormer (Chen et al., 2022a)  | 18.82  | 53.35              | 48.61                | 40.26 |
| PEFI    | Affine-LN (Basu et al., 2024)     | 16.92  | 58.38              | 46.07                | 40.46 |
|         | Decoder fine-tuning               | 25.98  | 65.69              | 64.23                | 51.97 |
|         | +BitFit (Ben-Zaken et al., 2021)  | 26.17  | 65.78              | 64.34                | 52.10 |
|         | +LoRA (Hu et al., 2022)           | 26.16  | 76.12              | 69.89                | 57.39 |
|         | +AdaptFormer (Chen et al., 2022a) | 23.84  | 72.32              | 69.79                | 55.32 |
|         | +Affine-LN (Basu et al., 2024)    | 26.09  | 65.91              | 64 53                | 52.18 |
| DD      | Linear Probe                      | 9.35   | 9.19               | 7.52                 | 8.68  |
| DD      | Spatial Adapter                   | 10.08  | 14.66              | 12.75                | 12.50 |

\* Avg. of five: upper/lower lobe left, upper/lower lobe right, middle lobe.

<sup>†</sup> Avg. of five: myocardium, atrium/ventricle left, atrium/verticle right.

Black-box methods are

<sup>±</sup> Avg. of six: maximus left/right, medius left/right, minimus left/right.

**NOT competitive** 

(Decoder Specialization)

Silva-Rodríguez et al. Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation. MICCAI W-MedAGI'23 (Extension Under Review).

#### **Few-Shot Efficient Fine-Tuning**

Transferability to novel tasks (new organs)

| Setting | Method                            | Lung* | Heart <sup>†</sup> | Gluteus <sup>‡</sup> | Avg.  |
|---------|-----------------------------------|-------|--------------------|----------------------|-------|
| THE     | Fine-tuning (Tang et al., 2022)   | 19.59 | 53.14              | 55.37                | 42.70 |
| FULL    | Fine-tuning (Ours)                | 31.01 | 60.79              | 65.35                | 52.38 |
|         | BitFit (Ben-Zaken et al., 2021)   | 14.79 | 48.90              | 39.43                | 34.28 |
|         | LoRA (Hu et al., 2022)            | 13.80 | 50.55              | 46.36                | 38.49 |
| PEFT    | AdaptFormer (Chen et al., 2022a)  | 18.82 | 53.35              | 48.61                | 40.26 |
|         | Affine-LN (Basu et al., 2024)     | 16.92 | 58.38              | 46.07                | 40.46 |
|         | Decoder fine-tuning               | 25.98 | 65.69              | 64.23                | 51.97 |
|         | +BitFit (Ben-Zaken et al. 2021)   | 26.17 | 65.78              | 64.34                | 52.10 |
|         | +LoRA (Hu et al., 2022)           | 26.16 | 76.12              | 69.89                | 57.39 |
|         | +AdaptFormer (Chen et al., 2022a) | 23.84 | 72.32              | <u>69.79</u>         | 55.32 |
|         | +Affine-LN (Basu et al., 2024)    | 26.09 | 65.91              | 64.53                | 52.18 |
| pp      | Linear Probe                      | 9.35  | 9.19               | 7.52                 | 8.68  |
| DD      | Spatial Adapter                   | 10.08 | 14.66              | 12.75                | 12.50 |

\* Avg. of five: upper/lower lobe left, upper/lower lobe right, middle lobe.

<sup>†</sup> Avg. of five: myocardium, atrium/ventricle left, atrium/verticle right.

<sup>‡</sup> Avg. of six: maximus left/right, medius left/right, minimus left/right.

Additive PEFT outperform Selective methods

**Few-Shot Efficient Fine-Tuning** 

### Transferability to novel tasks (new organs)

| Setting | Method                            | Lung*  | Heart <sup>†</sup> | Gluteus <sup>‡</sup> | Avg.  |
|---------|-----------------------------------|--------|--------------------|----------------------|-------|
| 121111  | Fine-tuning (Tang et al., 2022)   | 19.59  | 53.14              | 55.37                | 42.70 |
| FULL    | Fine-tuning (Ours)                | 31.01  | 60.79              | 65.35                | 52.38 |
|         | BitFit (Ben-Zaken et al., 2021)   | 714.79 | 48.90              | 39.43                | 34.28 |
|         | LoRA (Hu et al., 2022)            | 13.80  | 50.55              | 46.36                | 38.49 |
| DEEE    | AdaptFormer (Chen et al., 2022a)  | 18.82  | 53.35              | 48.61                | 40.26 |
| FEFI    | Affine-LN (Basu et al., 2024)     | 16.92  | 58.38              | 46.07                | 40.46 |
|         | Decoder fine-tuning               | 25.98  | 65.69              | 64.23                | 51.97 |
|         | +BitFit (Ben-Zaken et al., 2021)  | 26.17  | 65.78              | 64.34                | 52.10 |
|         | +LoRA (Hu et al., 2022)           | 26.16  | 76.12              | 69.89                | 57.39 |
|         | +AdaptFormer (Chen et al., 2022a) | 23.84  | 72.32              | 69.79                | 55.32 |
|         | +Affine-LN (Basu et al., 2024)    | 26.09  | 65.91              | 64.53                | 52.18 |
| DD      | Linear Probe                      | 9.35   | 9.19               | 7.52                 | 8.68  |
| DD      | Spatial Adapter                   | 10.08  | 14.66              | 12.75                | 12.50 |

\* Avg. of five: upper/lower lobe left, upper/lower lobe right, middle lobe.

<sup>†</sup> Avg. of five: myocardium, atrium/ventricle left, atrium/verticle right.

<sup>±</sup> Avg. of six: maximus left/right, medius left/right, minimus left/right.



#### **Few-Shot Efficient Fine-Tuning**

### Transferability to novel tasks (new organs)

| Setting | Method                            | Lung* | Heart <sup>†</sup> | Gluteus <sup>‡</sup> | Avg.  |
|---------|-----------------------------------|-------|--------------------|----------------------|-------|
| 12111   | Fine-tuning (Tang et al., 2022)   | 19.59 | 53.14              | 55.37                | 42.70 |
| FULL    | Fine-tuning (Ours)                | 31.01 | 60.79              | 65.35                | 52.38 |
|         | BitFit (Ben-Zaken et al.) 2021)   | 14.79 | 48.90              | 39.43                | 34.28 |
|         | LoRA (Hu et al., 2022)            | 13.80 | 50.55              | 46.36                | 38.49 |
| DETE    | AdaptFormer (Chen et al., 2022a)  | 18.82 | 53.35              | 48.61                | 40.26 |
| PEFI    | Affine-LN (Basu et al., 2024)     | 16.92 | 58.38              | 46.07                | 40.46 |
|         | Decoder fine-tuning               | 25.98 | 65.69              | 64.23                | 51.97 |
|         | +BitFit (Ben-Zaken et al., 2021)  | 26.17 | 65.78              | 64.34                | 52.10 |
|         | +LoRA (Hu et al., 2022)           | 26.16 | 76.12              | 69.89                | 57.39 |
|         | +AdaptFormer (Chen et al., 2022a) | 23.84 | 72.32              | 69.79                | 55.32 |
|         | +Affine-LN (Basu et al., 2024)    | 26.09 | 65.91              | 64.53                | 52.18 |
| DD      | Linear Probe                      | 9.35  | 9.19               | 7.52                 | 8.68  |
| DD      | Spatial Adapter                   | 10.08 | 14.66              | 12.75                | 12.50 |
|         |                                   |       |                    |                      |       |

#### \*not for all structures

\* Avg. of five: upper/lower lobe left, upper/lower lobe right, middle lobe.

<sup>†</sup> Avg. of five: myocardium, atrium/ventricle left, atrium/verticle right.

<sup>±</sup> Avg. of six: maximus left/right, medius left/right, minimus left/right.



### Silva-Rodríguez et *al.* Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation. MICCAI W-MedAGI'23 (Extension Under Review).

**Challenges and future** 

Transferability between modalities, e.g. CT to MRI.

Model selection: we need to facilitate the adaptation/fine-tuning stage to practitioners.

How to know a priori if using black-box Adapters, or PEFT. Which PEFT method to use?

Improving PEFT for convolutional architectures.

Better benchmarks in generalist vs. specialized pre-training for 3D.

#### References

- Rebuffi et *al.* Learning Multiple Visual Domains with Residual Adapters. NeurIPS'17.
- Chen et al. Med3D: Transfer Learning for 3D Medical Image Analysis. ArXiv'19
- Cai et *al*. TinyTL: Reduce Memory, Not Parameters for Efficient On-Device Learning. NeurIPS'20.
- Frankle et *al.* Training BatchNorm and Only BatchNorm: On the Expressive Power of Random Features in CNNs. ICLR'21.
- Zhou et al. Model Genesis. MedIA'21.
- Ben-Zaken et *al*. BitFit: Simple Parameter-Efficient Fine-Tuning for Transformerbased Masked Language Models. ACL'22.
- Hu et al. LoRA: Low-Rank Adaptation of Large Language Models. ICLR'22.
- Chen et *al*. AdaptFormer Adapting Vision Transformers for Scalable Visual Recognition. NeurIPS'22.
- Tang et *al.* Self-Supervised Pre-Training of Swin Transformers for 3D Medical Image Analysis. CVPR'22.
- Xie et *al.* UniMiSS: Universal Medical Self-Supervised Learning via Breaking Dimensionality Barrier. ECCV'22.
- Liu et *al.* CLIP-Driven Universal Model for Organ Segmentation and Tumor Detection. ICCV'23.
- Ulrich et *al.* MultiTalent: A Multi-Dataset Approach to Medical Image Segmentation. MICCAI'23.
- Ye et *al.* UniSeg: A Prompt-driven Universal Segmentation Model as well as A Strong Representation Learner. MICCAI'23.
- Silva-Rodríguez et *al.* Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation. MICCAI W-MedAGI'23.
- Butoi et al. Universeg: Universal medical image segmentation. ICCV'23.
- Kirillov et al. Segment Anything. ICCV'23.
- Gao et *al.* Training Like a Medical Resident: Context-Prior Learning Toward Universal Medical Image Segmentation. CVPR'24.

- Li et *al*. How Well Do Supervised 3D Models Transfer to Medical Imaging Tasks?. ICLR'24.
- Liu et *al.* Universal and Extensible Language-Vision Models for Organ Segmentation and Tumor Detection from Abdominal CT. MedIA'24.
- Wang et *al*. SAM-Med3D: Towards General-Purpose Segmentation Models for Volumetric Medical Images. ArXiv'24.
- Gong et *al.* 3DSAM-adapter: Holistic Adaptation of SAM from 2D to 3D for Promptable Medical Image Segmentation. MedIA'24.
- Chen et *al*. MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image Segmentation. MedIA'24.
- Ma et al. Segment Anything in Medical Images. Nat.Com.'24.
- Kulkarni et *al*. Anytime, Anywhere, Anyone: Investigating the Feasibility of SAM for Crowd-Sourcing Medical Image Annotations. MIDL'24.
- Huang et *al*. On The Challenges And Perspectives of Foundation Models For Medical Image Analysis. MedIA'24.
- Li et *al.* AdbomenAtlas: A Large Scale Detailed Annotated and Multi Center Dataset for Efficient Transfer Learning and Open Algorithmic Benchmarking. MedIA'24.
- Rakic et *al.* Tyche: Stochastic In-Context Learning for Medical Image Segmentation. CVPR'24.
- Basu et *al.* Strong Baselines for Parameter-Efficient Few-Shot Fine-Tuning-.. AAAI'24.
- Silva-Rodríguez et al. A Foundation Language-Image Model of the Retina: Encoding Expert Knowledge in Text Supervision. MedIA'24.
- Undandarao et al. No Zero-Shot without Exponential Data: Pretraining Concept frequency Determines Multimodal Model Performance. ICLRW-FM'24.