

From Foundation Models to Multi-Modal Models in Medical Imaging (FMLLM)

Ismail Ben Ayed

Tanveer Syeda-Mahmood

Yunsoo Kim



Julio Silva-Rodríguez

Outline (Morning session)

- M1. Introduction to Foundation Models -- 8 to 9:30 AM (Tanveer)
 - Evolution of Machine learning models
 - Definition of Foundation models
 - O What makes a model foundational?
 - Foundational models in medical imaging
 - Self-supervised learning, contrastive learning, masked auto-encoders
 - LLMs- transformers
- M2. Vision-Language Models (VLMs) 9:30 to 10:00 AM (Ismail)
 - Contrastive Language-Image Pre-training (CLIP)
 - Zero-shot and few-shot inference
 - Vision-language models for medical imaging (e.g., embedding domain knowledge)
- Coffee break: 10 to 10:30 AM

Outline (Morning session)

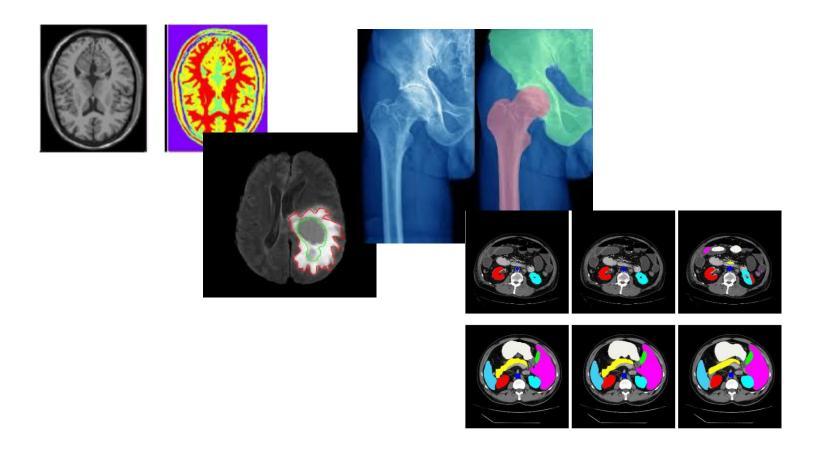
- M3. Fine-tuning large Vision-Language Models 10:30 to 11:10 AM (Ismail)
 - Prompt learning
 - Adapters
 - Linear-probing baselines
 - Parameter-efficient fine-tuning (e.g., low-rank approximation)
 - Transduction helps VLMs.
- M4. Foundational models for segmentation -- 11:10 to 11:50 AM (Julio)
 - Types of foundation models: a data perspective.
 - Learning/usages-based classification.
 - Zero-shot/adaptation-oriented volumetric foundation models.
- M5. Techniques for Improving LLM performance --11:50-12:10 PM (Tanveer)
 - Instruction tuning
 - Retrieval-augmented generation
 - Fact-checking
- M6. Deployment considerations of generative AI -- 12:-10 PM -12:30 PM (Tanveer)
 - Datasets for training foundational models
 - Evaluation of foundational models

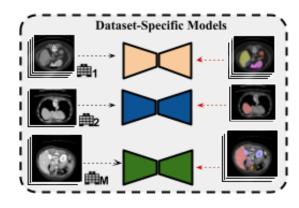
Part 4 Foundational models for segmentation

Outline

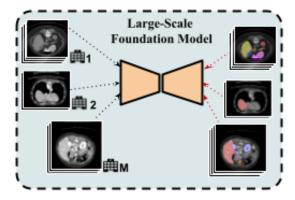
M4. Foundational models for segmentation

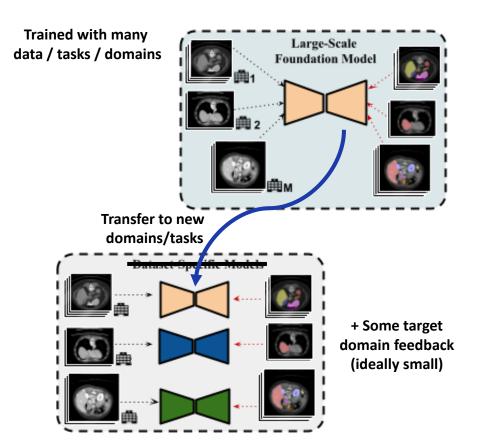
- Types of foundation models: a data perspective.
- Learning/usages-based classification.
- Zero-shot/adaptation-oriented volumetric foundation models.

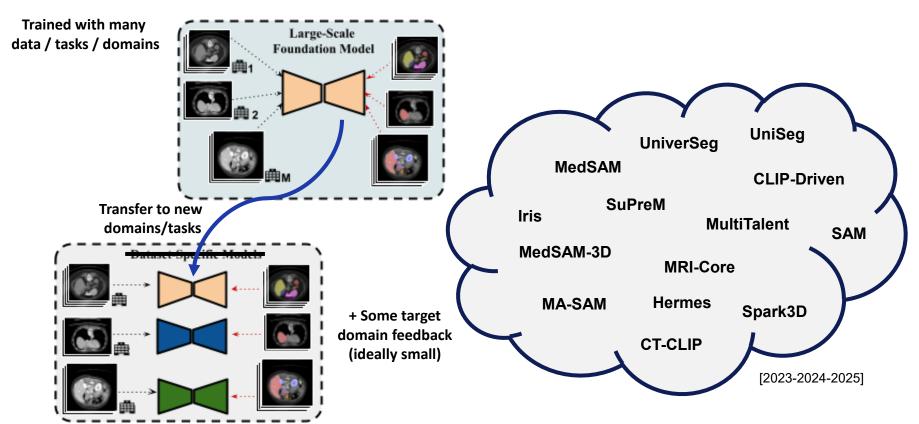


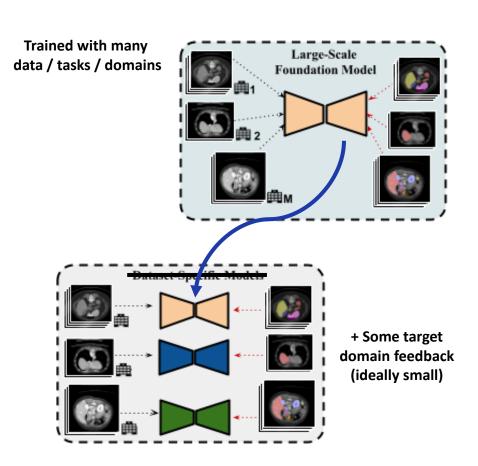


Trained with many data / tasks / domains



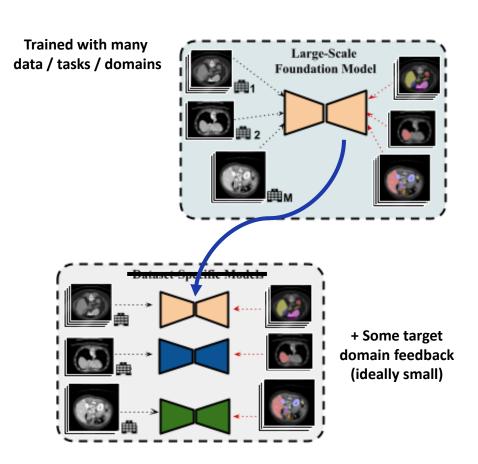






Organizing the mess!

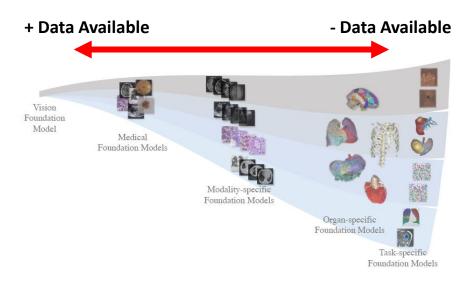
- 1. Types of foundation models: a data perspective.
 - A. Generalist vs. Specialized
 - B. 2D vs. 3D
 - C. Multimodal vs. Unimodal
- 2. Learning/Usage Objectives
 - A. Zero-shot / Transfer Learning
 - B. In-Context Learning
 - C. Interactive Models ("SAM")
- 3. Zero-shot / Adaptation-oriented (3D data)
 - A. How to pre-train?
 - B. How useful are foundation models? Limitations on the adaptation stage
 - C. Few-shot Parameter-Efficient Fine-tuning



Organizing the mess!

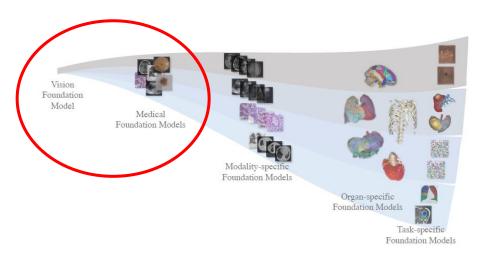
- 1. Types of foundation models: a data perspective.
 - A. Generalist vs. Specialized
 - B. 2D vs. 3D
 - C. Multimodal vs. Unimodal
- 2. Learning/Usage Objectives
 - A. Zero-shot / Transfer Learning
 - B. In-Context Learning
 - C. Interactive Models ("SAM")
- 3. Zero-shot / Adaptation-oriented (3D data)
 - A. How to pre-train?
 - B. How useful are foundation models? Limitations on the adaptation stage
 - C. Few-shot Parameter-Efficient Fine-tuning

Generalist vs. Specialized (pre-training)



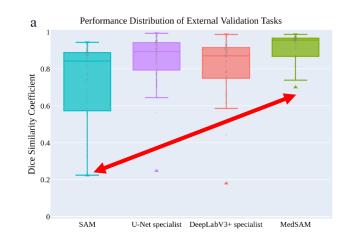
Huang et al. On The Challenges And Perspectives of Foundation Models For Medical Image Analysis. MedIA'24.

Generalist vs. Specialized (pre-training)



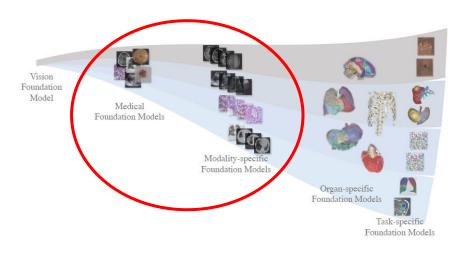
Huang et *al.* On The Challenges And Perspectives of Foundation Models For Medical Image Analysis. MedIA'24.

→ Medical better than General (natural image)



Ma et al. Segment Anything in Medical Images. Nat.Com.'24

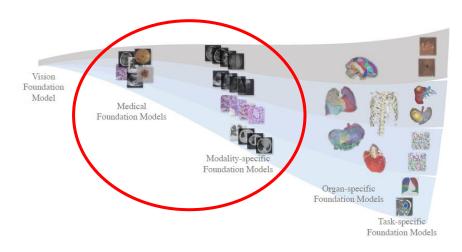
Generalist vs. Specialized (pre-training)



→ Modality better than Medical ? (scarce empirical studies for segmentation)

Huang et al. On The Challenges And Perspectives of Foundation Models For Medical Image Analysis. MedIA'24.

Generalist vs. Specialized (pretraining)



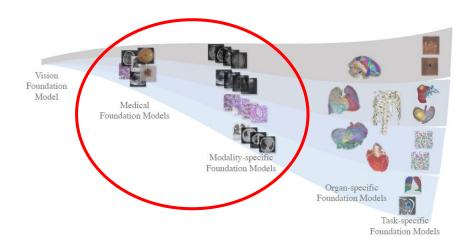
Huang et al. On The Challenges And Perspectives of Foundation Models For Medical Image Analysis. MedIA'24.

 → Modality better than Medical ? (scarce empirical studies for segmentation)
 BUT... On VLMs for classification it is the case.

(a) ${\it Zero-shot}$		MESSIDOR	FIVES	REFUGE	20x3	$\mathrm{ODIR}_{200\mathrm{x}3}$	$_{\mathrm{MMAC}}$	Avg.
CLIP	ViT-B/32	0.200	0.256	0.433	0.333	0.480	0.183	0.314
BiomedCLIP	ViT-B/16	0.207	0.415	0.624	0.617	0.583	0.274	0.453
FLAIR	RN50	0.604	0.735	0.883	0.983	0.667	0.400	0.712
(b) Linear Pr	obing							
ImageNet	RN50	0.424	0.741	0.733	0.983	0.887	0.631	0.733
CLIP	ViT-B/32	0.491	0.800	0.720	0.950	0.917	0.642	0.753
BiomedCLIP	ViT-B/16	0.433	0.654	0.776	0.866	0.883	0.678	0.715
RETFound	ViT-B/16	0.457	0.765	0.747	0.950	0.887	0.547	0.725
FLAIR	RN50	0.719	0.879	0.843	1.000	0.935	0.740	0.852

Silva-Rodríguez et al. A Foundation Language-Image Model of the Retina: Encoding Expert Knowledge in Text Supervision. MedIA'25.

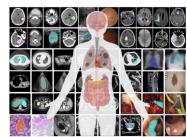
Generalist vs. Specialized (pretraining)



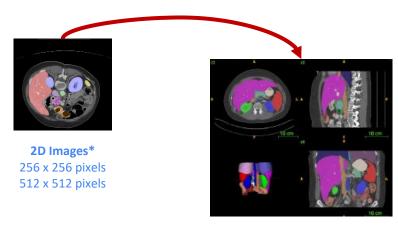
Huang et al. On The Challenges And Perspectives of Foundation Models For Medical Image Analysis. MedIA'24.

→ Modality better than Medical ?
 (scarce empirical studies for segmentation)
 BUT... Large domain GAP between modalities.

Butoi et al. Universeg: Universal medical image segmentation. ICCV'23.

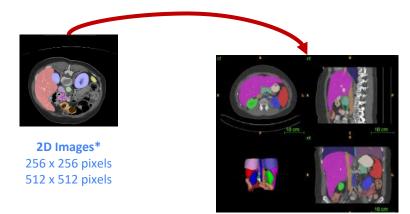


2D vs. 3D (pre-training)



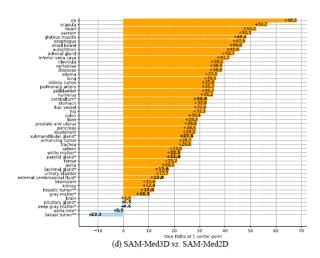
3D Volumes 256 x 256 x 500 pixels 512 x 512 x 500 pixels

2D vs. 3D (pre-training)



3D Volumes 256 x 256 x 500 pixels 512 x 512 x 500 pixels

→ Pre-training on 3D better than on 2D (also, a limitation of natural image pre-training)

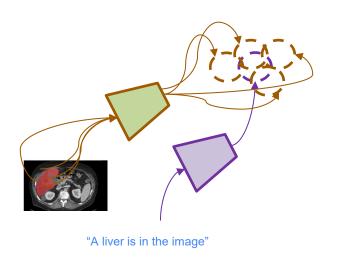


Wang et al. SAM-Med3D: Towards General-Purpose Segmentation Models for Volumetric Medical Images. ECCVw'24.

Multimodal vs. Unimodal

Image-Level image-language pre-training Heart size is enlarged. Clear consolidation at No abnormality seen...

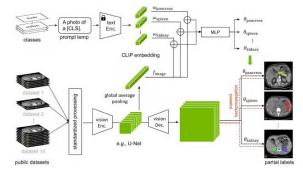
Segmentation image-language pre-training



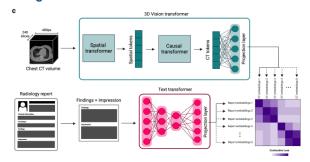
Multimodal vs. Unimodal

- → Why segmentation FMs in medical are mostly Unimodal?
- Scarcity of grounding language annotations with masks.
- Already-existing large datasets with pixel/voxel annotations only.
- Unclear contribution of text modality in absence of openvocabulary concepts.
- Some works include a CLIP-driven component, but its contribution is doubtful.
- To explore in lesion segmentation?

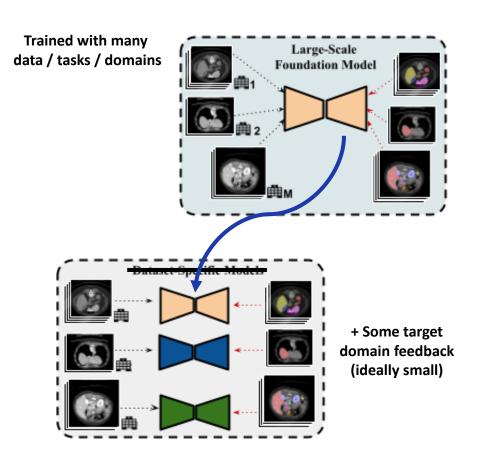
"A liver is in the image"



Liu et al. CLIP-Driven Universal Model for Organ Segmentation and Tumor Detection. ICCV'23.



Hamamci et al. Developing Generalist Foundation Models from a Multimodal Dataset for 3D Computed Tomography. ArXiv'24.



Organizing the mess!

- Types of foundation models: a data perspective.
 - A. Generalist vs. Specialized
 - B. 2D vs. 3D
 - C. Multimodal vs. Unimodal
- 2. Learning/Usage Objectives
 - A. Zero-shot / Transfer Learning
 - **B.** In-Context Learning
 - C. Interactive Models ("SAM")
- 3. Zero-shot / Adaptation-oriented (3D data)
 - A. How to pre-train?
 - B. How useful are foundation models? Limitations on the adaptation stage
 - C. Few-shot Parameter-Efficient Fine-Tuning

Zero-shot / Transfer Learning

ImageNet Philosophy

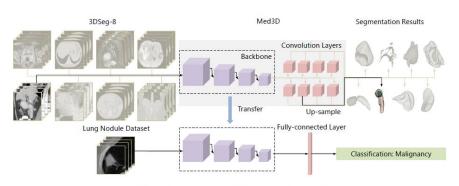
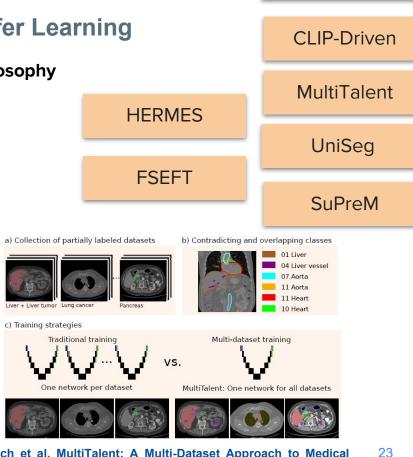


Figure 2: Framework of the proposed method.

Chen et al. Med3D: Transfer Learning for 3D Medical Image Analysis. ArXiv'19.



Ulrich et al. MultiTalent: A Multi-Dataset Approach to Medical Image Segmentation. MICCAl'23.

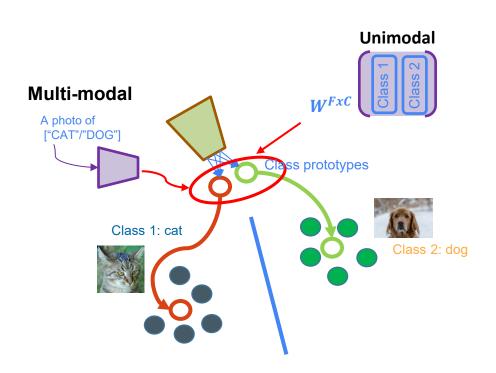
Med3D('19)

Learning / usage objectives. Med3D('19) **Zero-shot / Transfer Learning CLIP-Driven** ImageNet Philosophy MultiTalent **HERMES** 3DSeg-8 Med3D Segmentation Results UniSeq Backbone Zero-shot predictions to base tasks **FSEFT** SuPreM Transfer Up-sample nnected Layer Lung Nodule Dataset Fine-tuning to novel a) Collection of partially labeled datasets b) Contradicting and overlapping classes Classification: Malignancy domains/tasks 04 Liver vessel 07 Aorta 11 Aorta Figure 2: Framework of the proposed method. Liver + Liver tumor Lung cancer Chen et al. Med3D: Transfer Learning for 3D Medical Image Analysis. ArXiv'19. c) Training strategies Multi-dataset training VS. One network per dataset MultiTalent: One network for all datasets

Ulrich et al. MultiTalent: A Multi-Dataset Approach to Medical Image Segmentation. MICCAl'23.

(Zero-shot: VLMs vs. Unimodal)

Zero-shot: not receiving any supervision from the target domain/task



Is zero-shot predictions to novel categories a realistic objective?

Undandarao et al. No Zero-Shot without Exponential Data: Pretraining Concept frequency Determines Multimodal Model Performance. NeurIPS'24.

In Context Learning

"At the end of the day, practitioners won't fine-tune"

UniverSeg

Tyche

Iris

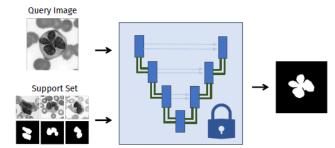
Traditional Approach

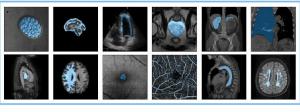
1. Design and train a task-specific model.

2. Predict new images with the trained model.

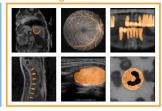
UniverSeg Approach

With a trained UniverSeg model, predict new images for the new task from a few labeled pairs without retraining.

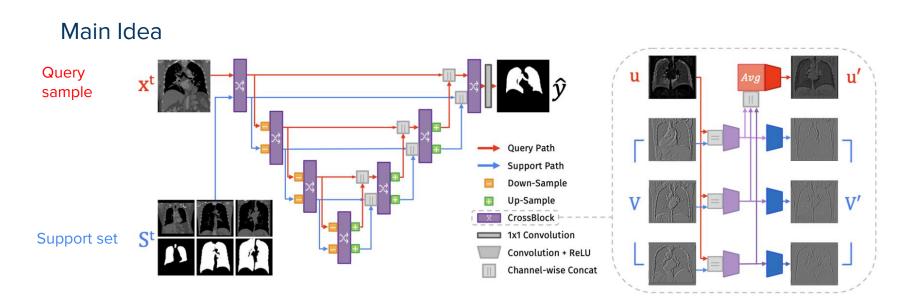




Test Segmentation Tasks

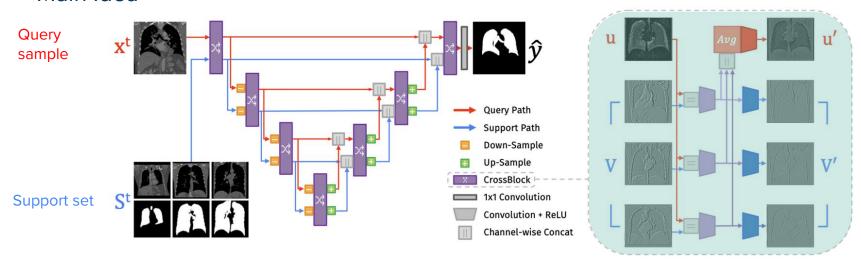


In Context Learning



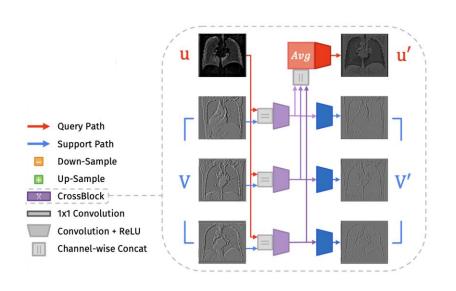
In Context Learning

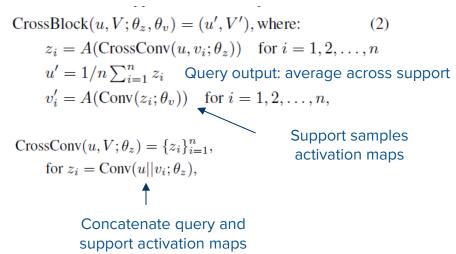
Main Idea



The representations from the query and support samples can interact at multiple scales

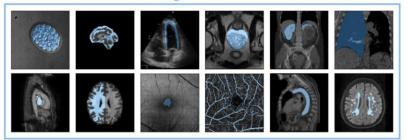
In Context Learning

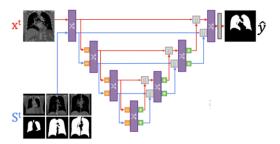




In Context Learning

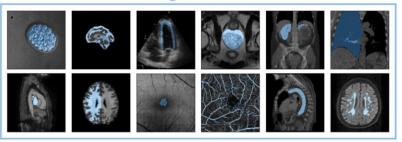
Train Segmentation Tasks

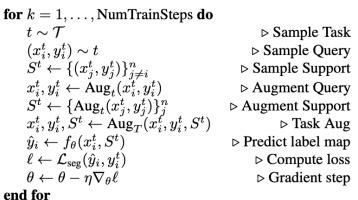


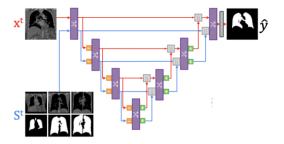


In Context Learning

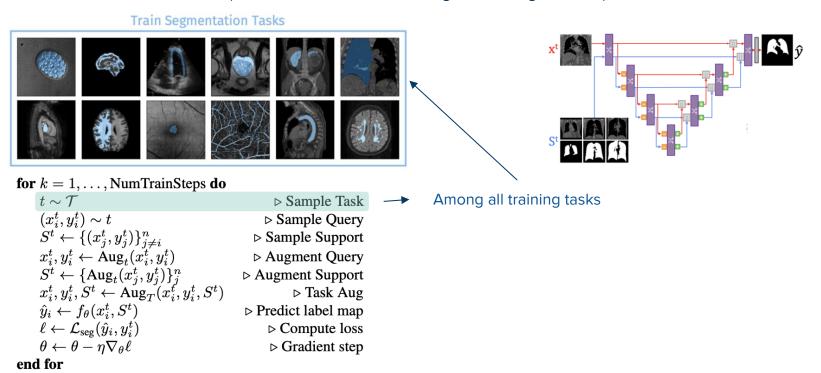
Train Segmentation Tasks



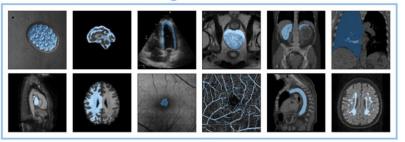


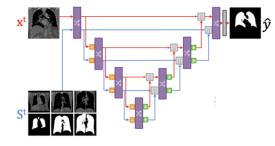


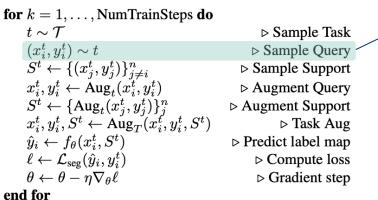
In Context Learning

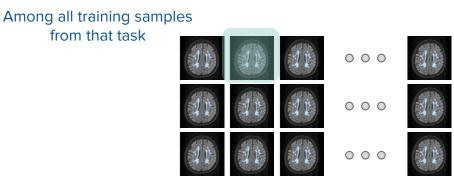


In Context Learning





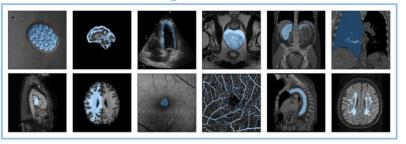


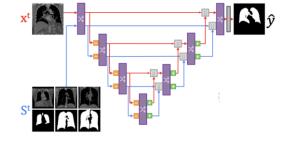


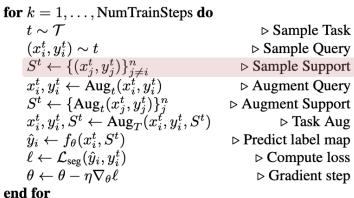
In Context Learning

How is this trained? (Hint: based on meta-learning or *learning-to-learn*)

Train Segmentation Tasks



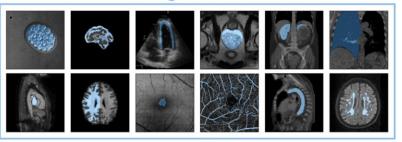


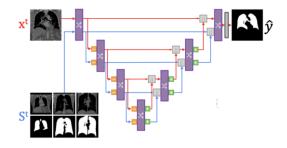


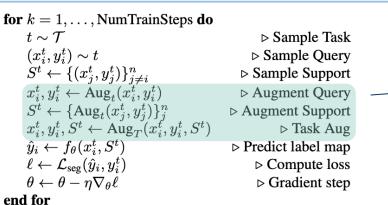
•

In Context Learning

How is this trained? (Hint: based on meta-learning or *learning-to-learn*)



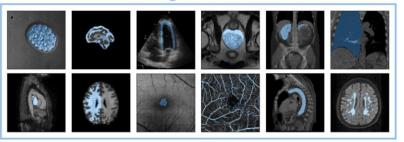


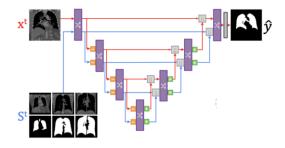


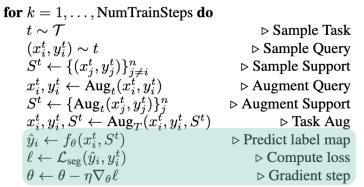
Images Augmentations

In Context Learning

How is this trained? (Hint: based on meta-learning or *learning-to-learn*)





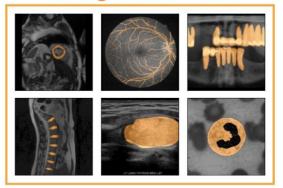


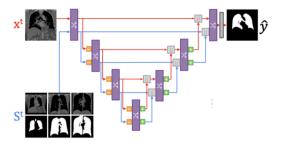
Standard (training) forwardbackward steps

In Context Learning

And what about inference?

Test Segmentation Tasks

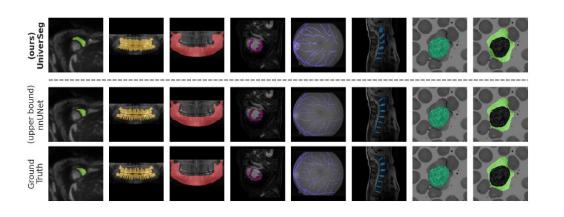




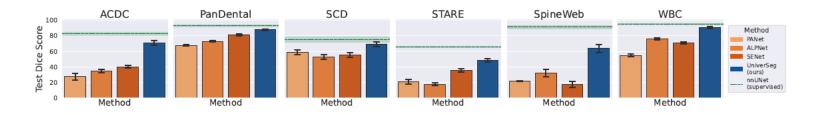
For a given image $\mathbf{x}^{\scriptscriptstyle \mathrm{t}}$ $\hat{y} = f_{\theta}(x^t, S^t)$

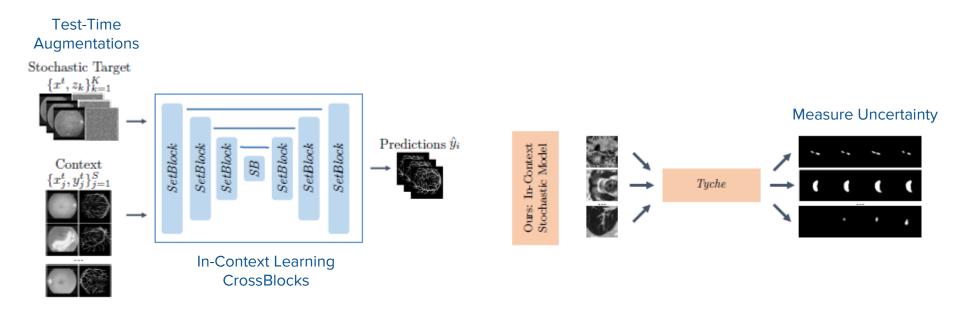
To make it more robust, multiple support sets are employed

$$\hat{y} = \frac{1}{M} \sum_{m=1}^{M} f_{\theta}(x^t, S_m^t)$$



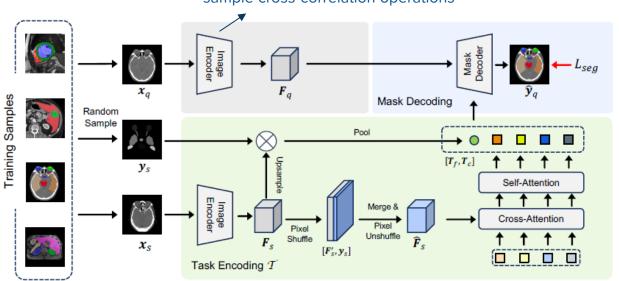
- Can tackle new tasks.
- ✓ Does not require fine-tuning.
- ✓ Promising performance.
- Limited to the binary scenario.
- Performance below dataset-specific models.
- × Unclear implementation on large 3D data.
- × Requires continuously employing the support set.

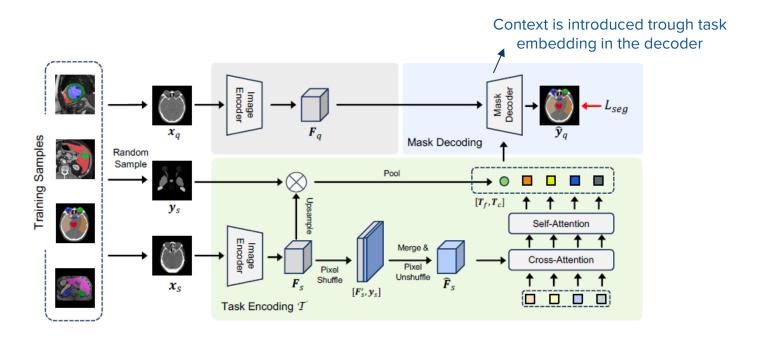


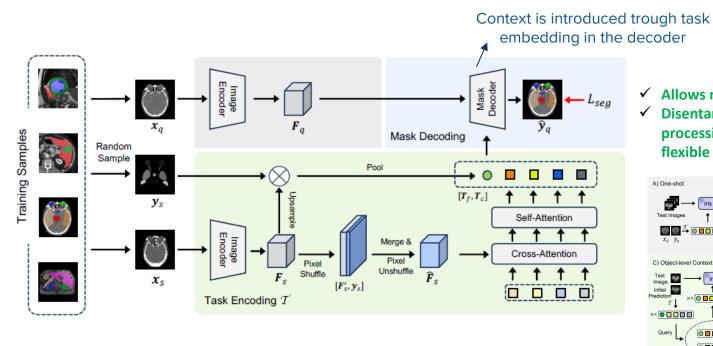


In Context Learning

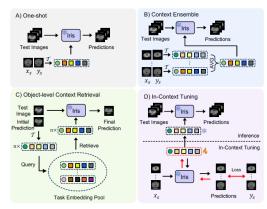
Image encoder disconnected from support sample cross-correlation operations





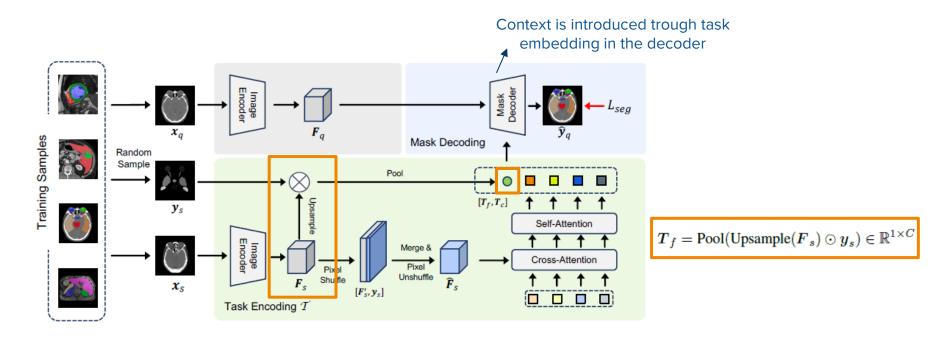


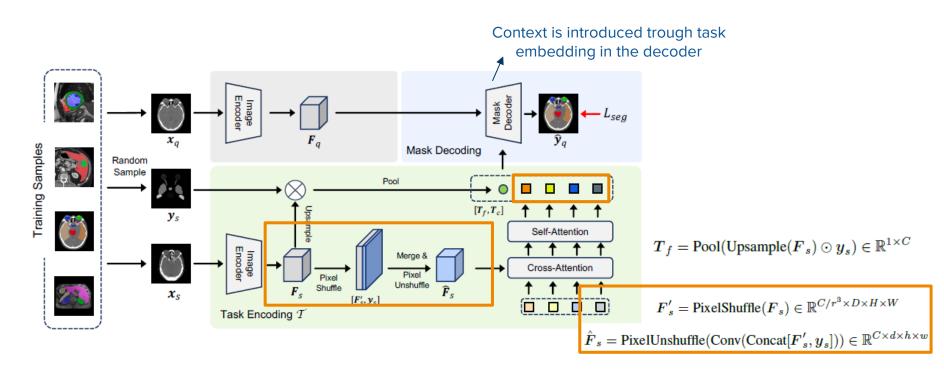
- ✓ Allows multi-class tasks.
- ✓ Disentangles the support set processing and inference – more flexible and efficient scenarios.



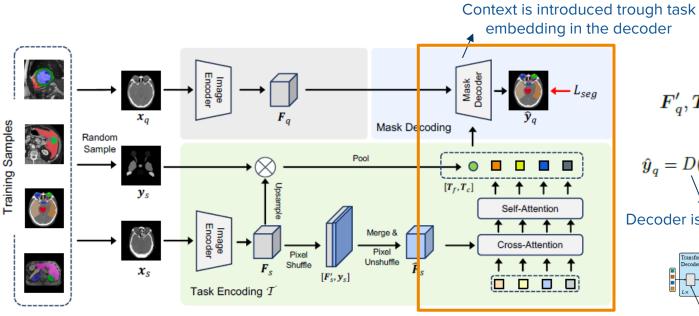
Iris

Learning / usage objectives.





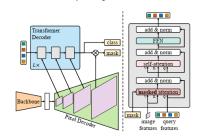
In Context Learning



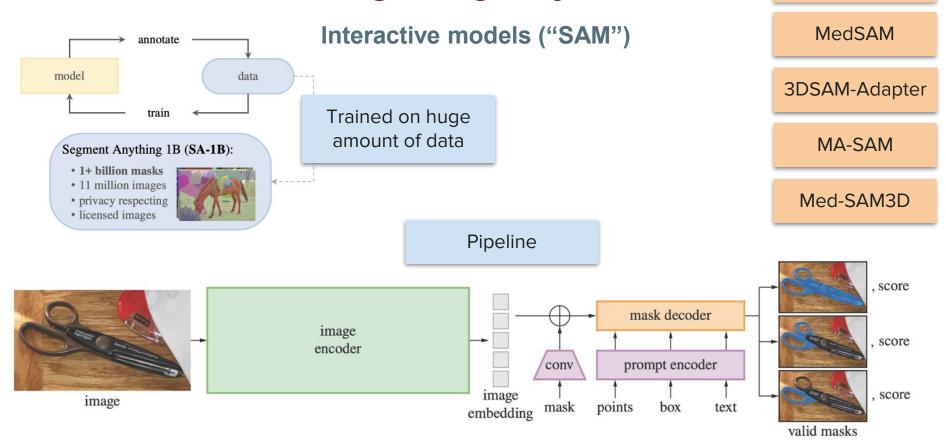
$$F_q', T' = \text{CrossAttn}(F_q, T)$$

$$\hat{y}_q = D(F_q', T') \in \{0, 1\}^{K \times D \times H \times W}$$

Decoder is a query-based Transformer



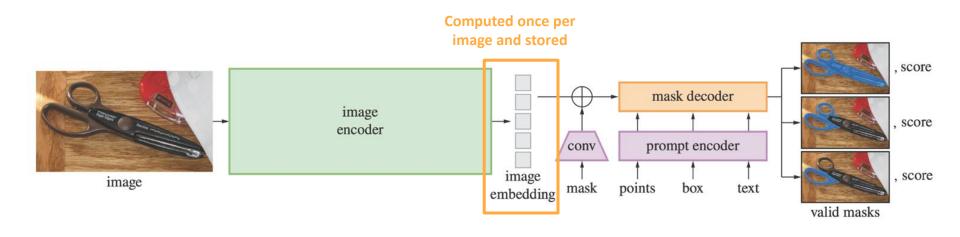
Mask2Former, CVPR'22.



SAM

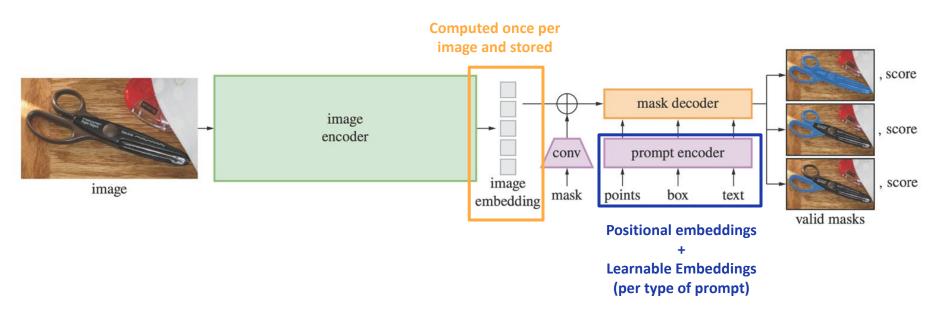
Interactive models ("SAM")

How is this trained?



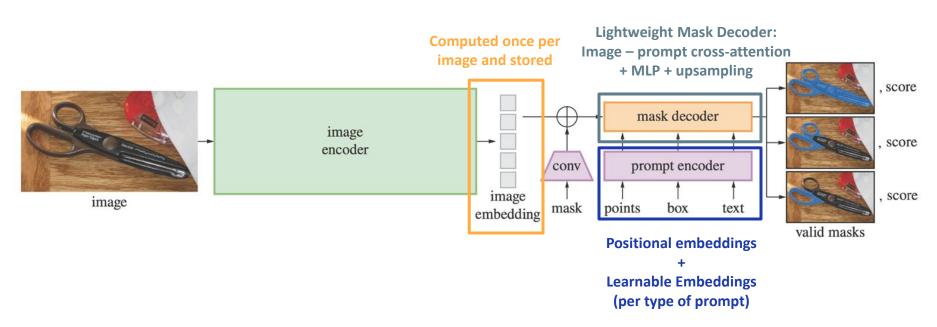
Interactive models ("SAM")

How is this trained?



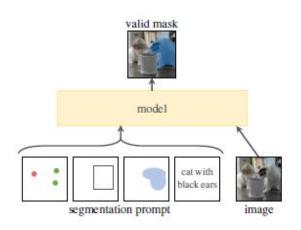
Interactive models ("SAM")

How is this trained?



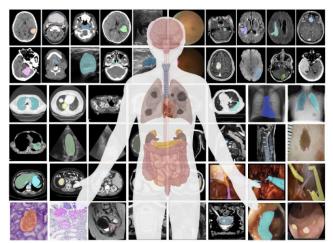
Interactive models ("SAM")

And what about inference?



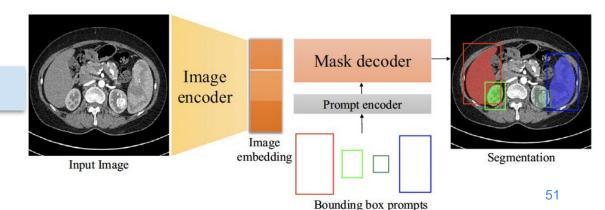
Remember: prompts on test data

Interactive models ("SAM")

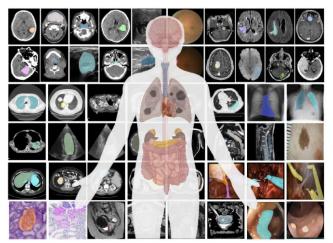


Fine-tuning SAM on huge amount of medical data

Pipeline

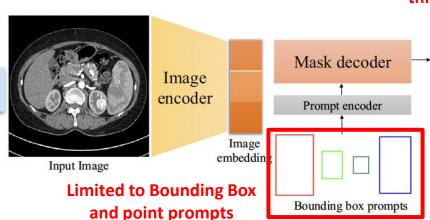


Interactive models ("SAM")



Trained on huge amount of data

Pipeline



How good is the DSC of this bounding box?

Segmentation

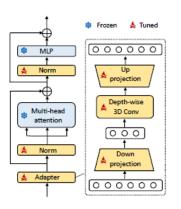
52

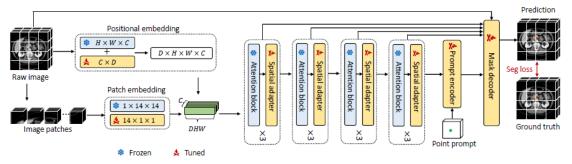
3DSAM-Adapter

Learning / usage objectives.

Interactive models ("SAM")

Fine-tuning SAM via Parameter-Efficient Fine-Tuning





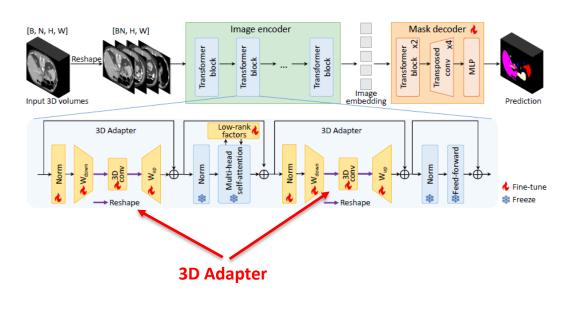
Gong et al. 3DSAM-adapter: Holistic Adaptation of SAM from 2D to 3D for Promptable Medical Image Segmentation. MedIA'24.

Interactive models ("SAM")

Fine-tuning SAM 2D via Parameter-Efficient Fine-Tuning to 3D

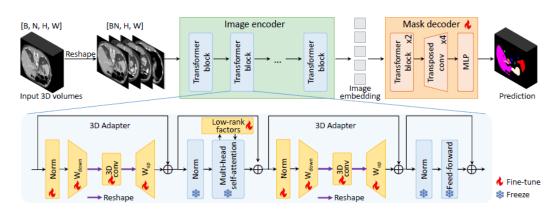
→ Adapt for promptable version.

Methods	Dice ↑	NSD ↑
nnU-Net (Isensee et al., 2021)	41.6	62.5
3D UX-Net (Lee et al., 2023)	34.8	52.6
SwinUNETR (Tang et al., 2022b)	40.6	60.0
nnFormer (Zhou et al., 2023a)	36.5	54.0
3DSAM-adapter (automatic) (Gong et al., 2023)	30.2	45.4
3DSAM-adapter (10 pts/scan) (Gong et al., 2023)	57.5	79.6
MA-SAM (automatic)	40.2	59.1
MA-SAM (1 tight 3D bbx/scan)	80.3	97.9
MA-SAM (1 relaxed 3D bbx/scan)	74.7	97.1



Interactive models ("SAM")

Fine-tuning SAM 2D via Parameter-Efficient Fine-Tuning to 3D

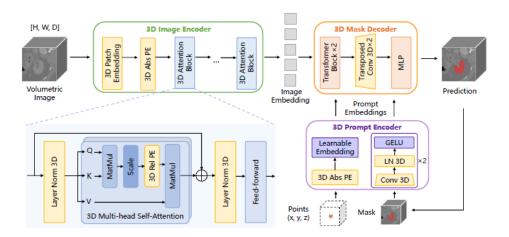


\rightarrow Fine-tuning SAM.

Methods	Spleen	R.Kd	L.Kd	GB	Eso.	Liver	Stomach	Aorta	IVC	Veins	Pancrea	s AG	Average
				Di	ce [%]	↑							
nnU-Net (Isensee et al., 2021)	97.0	95.3	95.3	63.5	77.5	97.4	89.1	90.1	88.5	79.0	87.1	75.2	86.3
3D UX-Net (Lee et al., 2023)	94.6	94.2	94.3	59.3	72.2	96.4	73.4	87.2	84.9	72.2	80.9	67.1	81.4
SwinUNETR (Tang et al., 2022b)	95.6	94.2	94.3	63.6	75.5	96.6	79.2	89.9	83.7	75.0	82.2	67.3	83.1
nnFormer (Zhou et al., 2023a)	93.5	94.9	95.0	64.1	79.5	96.8	90.1	89.7	85.9	77.8	85.6	73.9	85.6
SAMed_h (Zhang and Liu, 2023)	95.3	92.1	92.9	62.1	75.3	96.4	90.2	87.6	79.8	74.2	77.9	61.0	82.1
MA-SAM (Ours)	96.7	95.1	95.4	68.2	82.1	96.9	92.8	91.1	87.5	79.8	86.6	73.9	87.2

Training a 3D SAM with Medical data from Scratch

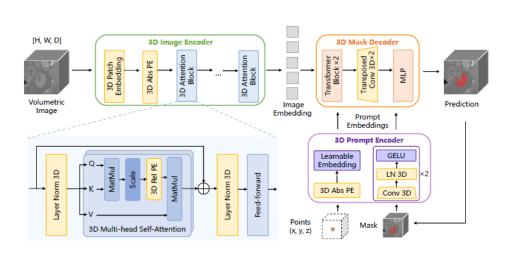
Interactive models ("SAM")



Model	Prompt	Prompt Inference Time (s)			%) Overall
SAM SAM-Med2D SAM-Med3D	N pts N pts 1 pt	$N(\tau + 0.13)$ $N(\tau + 0.04)$ $\tau + 2$	16.79 38.91 81.98	22.55	16.15 36.83 76.27
SAM SAM-Med2D SAM-Med3D	3N pts $3N$ pts 3 pts	$\begin{array}{c} 3N(\tau+0.19) \\ 3N(\tau+0.07) \\ 3\tau+3 \end{array}$	34.61 51.46 84.14		32.24 48.70 79.02
SAM SAM-Med2D SAM-Med3D	5N pts $5N$ pts 5 pts	$\begin{array}{c} 5N(\tau + 0.25) \\ 5N(\tau + 0.10) \\ 5\tau + 4 \end{array}$	49.39 51.89 84.62	30.41	45.89 49.17 79.75
SAM-Med3D	10 pts	$10\tau + 6$	85.19	49.92	80.71

Training a 3D SAM with Medical data from Scratch

Interactive models ("SAM")

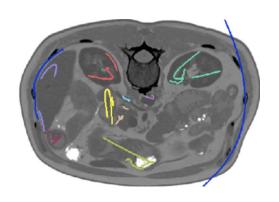


1 point for each N slices

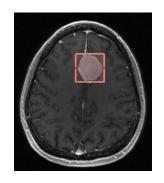
\			
Model	Prompt	Inference Time (s)	Dice (%) Seen Unseen Overall
SAM SAM-Med2D SAM-Med3D	N pts N pts 1 pt	$N(\tau + 0.13) N(\tau + 0.04) \tau + 2$	16.79 11.73 16.15 38.91 22.55 36.83 81.98 37.02 76.27
SAM SAM-Med2D SAM-Med3D	3N pts $3N$ pts 3 pts	$3N(\tau + 0.19) 3N(\tau + 0.07) 3\tau + 3$	34.61 15.94 32.24 51.46 29.70 48.70 84.14 43.80 79.02
SAM SAM-Med2D SAM-Med3D	5N pts $5N$ pts 5 pts	$5N(\tau + 0.25) 5N(\tau + 0.10) 5\tau + 4$	49.39 21.86 45.89 51.89 30.41 49.17 84.62 46.26 79.75
SAM-Med3D	10 pts	$10\tau + 6$	85.19 49.92 80.71

Improved over 2D version

Interactive models ("SAM")

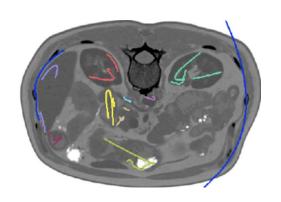


SAM is promptable (i.e., requires user interaction per EACH test image)

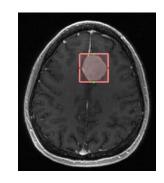


SAM only handles binary segmentation (one class at a time)

Interactive models ("SAM")



SAM is promptable (i.e., requires user interaction per EACH test image)

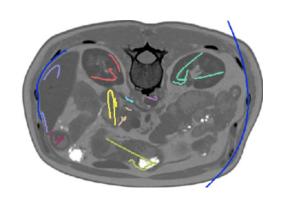


SAM only handles binary segmentation (one class at a time)

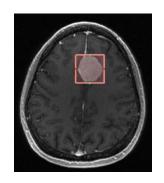
			k-specific	General-purpose				
Dataset	Modality	IINETE	11] nnU-Net [16	SAM-Med2D	6 SegVol [8]	Ours	Ours	
		ONETH	iij iiio-ivet įie	(N pts)	(pt+text)	(1 pt)	(10 pts)	
Totalsegmentator [36]	CT	75.05	85.22	38.26	-	84.68	87.59	
KiTS21 [12]	CT	70.75	75.32	68.74	-	72.06	75.37	
AMOS-CT [17]	CT	78.33	88.87	49.61	-	79.94	83.99	
AMOS-MR [17]	MR	76.29	86.92	45.53	-	75.41	81.13	
BTCV* [19]	CT	78.99	81.92	50.05	73.81	79.17	83.01	
TDSC-ABUS23* [33]	US^*	-	45.08	49.39	-	36.08	54.35	

SAM yields sometimes lower results to taskspecific models

Interactive models ("SAM")



SAM is promptable (i.e., requires user interaction per EACH test image)

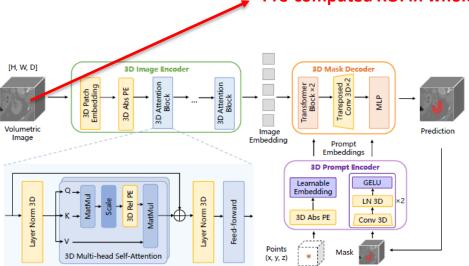


SAM only handles binary segmentation (one class at a time)

		Task-s	pecific	General-purpose					
Dataset	Modality	UNETR [11]	nnU-Net [16	SAM-Med2D	6 SegVol [8]		Ours		
		01.2110 [11]	1100 1100	(N pts)	(pt+text)	(1 pt)	(10 pts)		
Totalsegmentator [36]	CT	75.05	85.22	38.26	-	84.68	87.59		
KiTS21 [12]	CT	70.75	75.32	68.74	-	72.06	75.37		
AMOS-CT 17	CT	78.33	88.87	49.61	-	79.94	83.99		
AMOS-MR 17	MR	76.29	86.92	45.53	-	75.41	81.13		
BTCV* [19]	CT	78.99	81.92	50.05	73.81	79.17	83.01		
TDSC-ABUS23* [33]	US^*	-	45.08	49.39	-	36.08	54.35		

SAM yields sometimes lower results to taskspecific models

Pre-computed ROI in whole-body scans

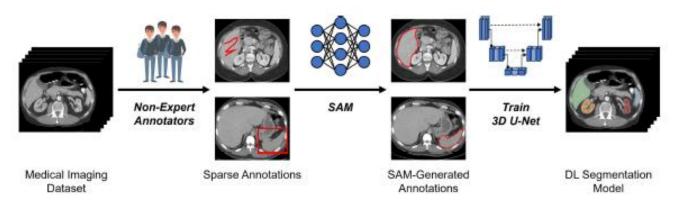


Model	Prompt	Inference Time (s)	Dice (%)				
Model	Frompt	interence Time (s)	Seen	Unseen	Overall		
SAM	N pts	$N(\tau + 0.13)$	16.79	11.73	16.15		
SAM-Med2D	N pts	$N(\tau + 0.04)$	38.91	22.55	36.83		
SAM-Med3D	1 pt	$ au{+}2$	81.98	37.02	76.27		
SAM	3N pts	$3N(\tau + 0.19)$	34.61	15.94	32.24		
SAM-Med2D	3N pts	$3N(\tau + 0.07)$	51.46	29.70	48.70		
${\rm SAM\text{-}Med3D}$	$3 ext{ pts}$	$3\tau+3$	84.14	43.80	79.02		
SAM	5N pts	$5N(\tau + 0.25)$	49.39	21.86	45.89		
SAM-Med2D	5N pts	$5N(\tau + 0.10)$	51.89	30.41	49.17		
${\rm SAM\text{-}Med3D}$	5 pts	$5\tau{+4}$	84.62	46.26	79.75		
SAM-Med3D	10 pts	$10\tau + 6$	85.19	49.92	80.71		

Iterative random points over the error region (explicit access to GT)

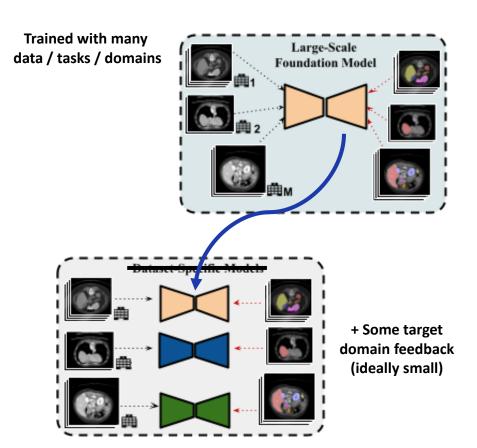
Interactive models ("SAM")

Applications in Active Learning / Annotations



Kulkarni et al. Anytime, Anywhere, Anyone: Investigating the Feasibility of SAM for Crowd-Sourcing Medical Image Annotations. MIDL'24.

Foundation models for medical image segmentation



Organizing the mess!

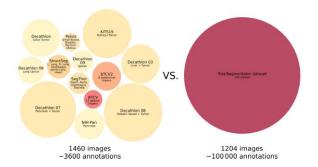
- Types of foundation models: a data perspective.
 - A. Generalist vs. Specialized
 - B. 2D vs. 3D
 - C. Multimodal vs. Unimodal
- 2. Learning/Usage Objectives
 - A. Zero-shot / Transfer Learning
 - B. In-Context Learning
 - C. Interactive Models ("SAM")
- 3. Zero-shot / Adaptation-oriented (3D data)
 - A. How to pre-train?
 - B. How useful are foundation models? Limitations on the adaptation stage
 - C. Few-shot Parameter-Efficient Fine-tuning

Learning / usage objectives. Med3D('19) **Zero-shot / Transfer Learning CLIP-Driven** ImageNet Philosophy MultiTalent **HERMES** 3DSeg-8 Med3D Segmentation Results UniSeq Backbone Zero-shot predictions to base tasks **FSEFT** SuPreM Transfer Up-sample nnected Layer Lung Nodule Dataset Fine-tuning to novel a) Collection of partially labeled datasets b) Contradicting and overlapping classes Classification: Malignancy domains/tasks 04 Liver vessel 07 Aorta 11 Aorta Figure 2: Framework of the proposed method. Liver + Liver tumor Lung cancer Chen et al. Med3D: Transfer Learning for 3D Medical Image Analysis. ArXiv'19. c) Training strategies Multi-dataset training VS. One network per dataset MultiTalent: One network for all datasets

Ulrich et al. MultiTalent: A Multi-Dataset Approach to Medical Image Segmentation. MICCAl'23.

Med3D('19)

Why volumetric (and mostly CT)?



Ulrich et al. MultiTalent: A Multi-Dataset Approach to Medical Image Segmentation. MICCAl'23.

CLIP-Driven

MultiTalent

UniSeg

SuPreM

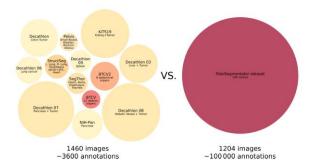
Datasets	# Targets	# Scans	Annotated Organs or Tumors
1. Pancreas-CT [62]	1	82	Pancreas
2. LiTS [3]	2	201	Liver, Liver Tumor*
3. KiTS [25]	2	300	Kidney, Kidney Tumor*
4. AbdomenCT-1K [45]	4	1,000	Spleen, Kidney, Liver, Pancreas
5. CT-ORG [60]	4	140	Lung, Liver, Kidneys and Bladder
6. CHAOS [73]	4	40	Liver, Left Kidney, Right Kidney, Spl
7-11. MSD CT Tasks [1]	9	947	Spl, Liver and Tumor*, Lung Tumor*, Colon Tumor*, Pan and Tumor*, Hepatic Vessel and Tumor*
12. BTCV [37]	13	50	Spl, RKid, LKid, Gall, Eso, Liv, Sto, Aor, IVC, R&SVeins, Pan, RAG, LAG
13. AMOS22 [32]	15	500	Spl, RKid, LKid, Gall, Eso, Liv, Sto, Aor, IVC, Pan, RAG, LAG, Duo, Bla, Pro/UTE
14. WORD [44]	16	150	Spl, RKid, LKid, Gall, Eso, Liv, Sto, Pan, RAG, Duo, Col, Int, Rec, Bla, LFH, RFH
15. 3D-IRCADb [67]	13	20	Liv, Liv Cyst, RLung, LLung, Venous, PVein, Aor, Spl, RKid, LKid, Gall, IVC
16. TotalSegmentator [79]	104	1,024	Clavicula, Humerus, Scapula, Rib 1-12, Vertebrae C1-7, Vertebrae T1-9, Vertebrae L1-5, Hip, Sacrum, Femur, Aorta, Pulmonary Artery, Right Ventricle, Right Atrium, Left Atrium, Left Ventricle, Myocardium, PVein, SVein, IVC, Iliac Artery, Iliac Vena, Brain, Trachea, Lung Upper Lobe, Lung Liddle Lobe, Lung Lower Lobe, AG, Spl, Liv, Gall, Pan, Kid, Eso, Sto, Duo, Small Bowel, Colon, Bla, Autochthon, Iliopsoas, Gluteus Minimus, Gluteus Medius, Gluteus Maximus
17. JHH (private)	21	5,038	Aor, AG, CBD, Celiac AA, Colon, duo, Gall, IVC, Lkid, RKid, Liv, Pan, Pan Duct, SMA, Small bowel, Spl, Sto, Veins, Kid LtRV, Kid RtRV, CBD Stent, PDAC*, PanNET*, Pancreatic Cyst*

Med3D('19)

CLIP-Driven

MultiTalent

Why volumetric (and mostly CT)?



UniSeq

SuPreM

Ulrich et al. MultiTalent: A Multi-Dataset Approach to Medical

- Image Segmentation. MICCAl'23.
- → A good number of annotated scans publicly available. (current models are pre-trained with 2K CTs)
- → Anatomical morphology is natural 3D.
- → Labeling at voxel level is tremendously costly for practitioners (10 min per structure).
- → Enormous potential of FMs to address inter-center, inter-scan and demographics variabilities.

Datasets	# Targets	# Scans	Annotated Organs or Tumors
1. Pancreas-CT [62]	1	82	Pancreas
2. LiTS [3]	2	201	Liver, Liver Tumor*
3. KiTS [25]	2	300	Kidney, Kidney Tumor*
4. AbdomenCT-1K [45]	4	1,000	Spleen, Kidney, Liver, Pancreas
5. CT-ORG [60]	4	140	Lung, Liver, Kidneys and Bladder
6. CHAOS [73]	4	40	Liver, Left Kidney, Right Kidney, Spl
7-11. MSD CT Tasks [1]	9	947	Spl, Liver and Tumor*, Lung Tumor*, Colon Tumor*, Pan and Tumor*, Hepatic Vessel and Tumor*
12. BTCV [37]	13	50	Spl, RKid, LKid, Gall, Eso, Liv, Sto, Aor, IVC, R&SVeins, Pan, RAG, LAG
13. AMOS22 [32]	15	500	Spl, RKid, LKid, Gall, Eso, Liv, Sto, Aor, IVC, Pan, RAG, LAG, Duo, Bla, Pro/UTE
14. WORD [44]	16	150	Spl, RKid, LKid, Gall, Eso, Liv, Sto, Pan, RAG, Duo, Col, Int, Rec, Bla, LFH, RFH
15. 3D-IRCADb [67]	13	20	Liv, Liv Cyst, RLung, LLung, Venous, PVein, Aor, Spl, RKid, LKid, Gall, IVC
16. TotalSegmentator [79]	104	1,024	Clavicula, Humerus, Scapula, Rib 1-12, Vertebrae C1-7, Vertebrae T1-9, Vertebrae L1-5, Hip, Sacrum, Femur, Aorta, Pulmonary Artery, Right Ventricle, Right Atrium, Left Atrium, Left Ventricle, Myocardium, PVein, SVein, IVC, Iliac Artery, Iliac Vena, Brain, Trachea, Lung Upper Lobe, Lung Middle Lobe, Lung Lower Lobe, AG, Spl, Liv, Gall, Pan, Kid, Eso, Sto, Duo, Small Bowel, Colon, Bla, Autochthon, Iliopsoas, Gluteus Minimus, Gluteus Medius, Gluteus Maximus
17. JHH (private)	21	5,038	Aor, AG, CBD, Celiac AA, Colon, duo, Gall, IVC, Lkid, RKid, Liv, Pan, Pan Duct, SMA, Small bowel, Spl, Sto, Veins, Kid LtRV, Kid RtRV, CBD Stent, PDAC*, PanNET*, Pancreatic Cyst*

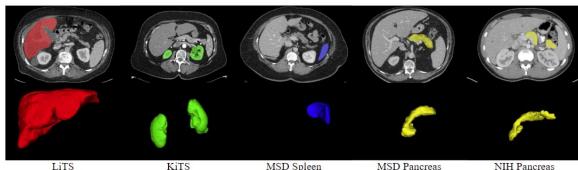
Med3D('19)

Challenges of Dataset Assembling

CLIP-Driven

Partially-labeled datasets

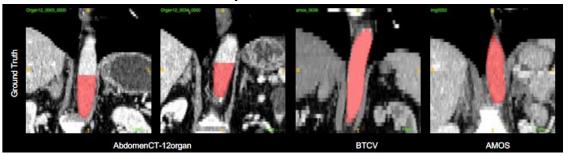
MultiTalent



UniSeg

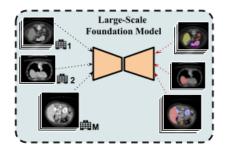
SuPreM

Inconsistent annotation protocols



67

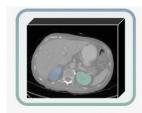
MultiTalent



How to pre-train? Masked CE

FSEFT

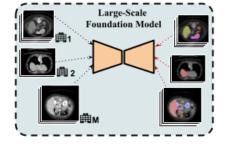
$$\mathcal{D}_T = \{(\mathbf{X}_n, \mathbf{Y}_n, \mathbf{w}_n)\}_{n=1}^N$$



Dataset A: kidney Dataset B: spleen

Dataset D: liver

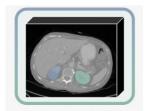
MultiTalent



Total Number of Categories

 $w^c = [0, 1, 1, 0, 0, 0, 1, 0, 0]$

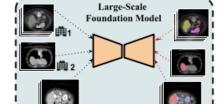
$$\mathcal{D}_T = \{(\mathbf{X}_n, \mathbf{Y}_n, \mathbf{w}_n)\}_{n=1}^N$$



Dataset A: kidney Dataset B: spleen

Dataset D: liver

MultiTalent



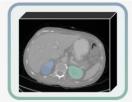
How to pre-train? Masked CE

FSEFT

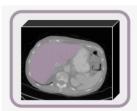
Annotated on its dataset

$$w^c = [0, 1, 1, 0, 0, 0, 1, 0, 0]$$

$$\mathcal{D}_T = \{(\mathbf{X}_n, \mathbf{Y}_n, \mathbf{w}_n)\}_{n=1}^N$$

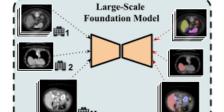


Dataset A: kidney Dataset B: spleen



Dataset D: liver

MultiTalent



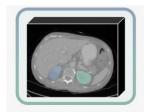
How to pre-train? Masked CE

FSEFT

NOT annotated on its dataset

$$w^c = [0, 1, 1, 0, 0, 0, 1, 0, 0]$$

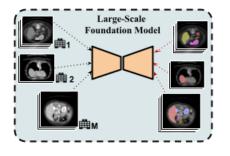
$$\mathcal{D}_T = \{(\mathbf{X}_n, \mathbf{Y}_n, \mathbf{w}_n)\}_{n=1}^N$$



Dataset A: kidney Dataset B: spleen

Dataset D: liver

MultiTalent



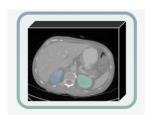
How to pre-train? Masked CE

FSEFT

1. Forward Encoder-Decoder

$$\mathbf{Z}_n = \theta_f(\mathbf{X}_n)$$

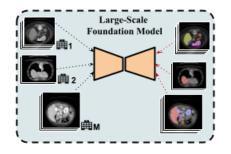
$$\mathcal{D}_T = \{(\mathbf{X}_n, \mathbf{Y}_n, \mathbf{w}_n)\}_{n=1}^N$$



Dataset A: kidney Dataset B: spleen

Dataset D: liver

MultiTalent

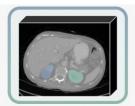


How to pre-train? Masked CE

FSEFT

Assembly Dataset with **Partial Labels**

$$\mathcal{D}_T = \{(\mathbf{X}_n, \mathbf{Y}_n, \mathbf{w}_n)\}_{n=1}^N$$



Dataset A: kidney Dataset B: spleen

Dataset D: liver

1. Forward Encoder-Decoder

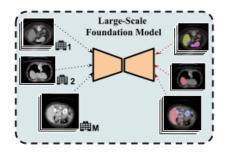
$$\mathbf{Z}_n = \theta_f(\mathbf{X}_n)$$

2. Forward Classifier + Sigmoid activation

$$\hat{\mathbf{Y}}_n = \sigma(\theta_c(\mathbf{Z}_n))$$

Disentangle prediction for each task (softmax might affect notannotated categories)

MultiTalent

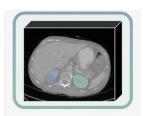


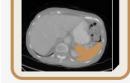
How to pre-train? Masked CE

FSEFT

Assembly Dataset with Partial Labels

$$\mathcal{D}_T = \{(\mathbf{X}_n, \mathbf{Y}_n, \mathbf{w}_n)\}_{n=1}^N$$





Dataset D: liver

1. Forward Encoder-Decoder

$$\mathbf{Z}_n = \theta_f(\mathbf{X}_n)$$

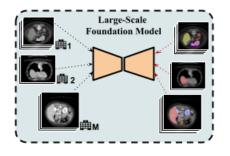
2. Forward Classifier + Sigmoid activation

$$\hat{\mathbf{Y}}_n = \sigma(\theta_c(\mathbf{Z}_n))$$

3. Compute any masked segmentation loss, and update

$$\min_{\theta_f, \theta_c} \quad \frac{1}{\sum_k \mathbf{w}_{n,k}} \sum_k \mathbf{w}_{n,k} \mathcal{L}_{SEG}(\mathbf{Y}_{n,k}, \hat{\mathbf{Y}}_{n,k}), \quad n = 1, ..., N$$

MultiTalent



How to pre-train? Masked CE

FSEFT

Assembly Dataset with Partial Labels

$$\mathcal{D}_T = \{(\mathbf{X}_n, \mathbf{Y}_n, \mathbf{w}_n)\}_{n=1}^N$$

Dataset D: liver

1. Forward Encoder-Decoder

$$\mathbf{Z}_n = \theta_f(\mathbf{X}_n)$$

2. Forward Classifier + Sigmoid activation

$$\hat{\mathbf{Y}}_n = \sigma(\theta_c(\mathbf{Z}_n))$$

3. Compute any masked segmentation loss, and update

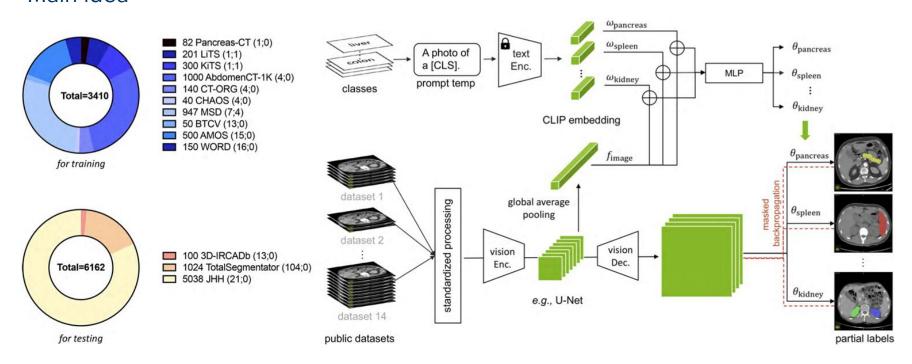
$$L = \sum_{c} \left(\mathbb{1}_{c}^{(k)} \frac{1}{I} \sum_{z} BCE(\hat{y}_{z,c}^{(k)}, \ y_{z,c}^{(k)}) - \frac{2 \sum_{z} \mathbb{1}_{c}^{(k)} \ \hat{y}_{z,c}^{(k)} \ y_{z,c}^{(k)}}{\sum_{z} \mathbb{1}_{c}^{(k)} \ \hat{y}_{z,c}^{(k)} + \sum_{z} \mathbb{1}_{c}^{(k)} \ y_{z,c}^{(k)}} \right)$$

CLIP-Driven

How to pre-train? Masked CE

SuPreM

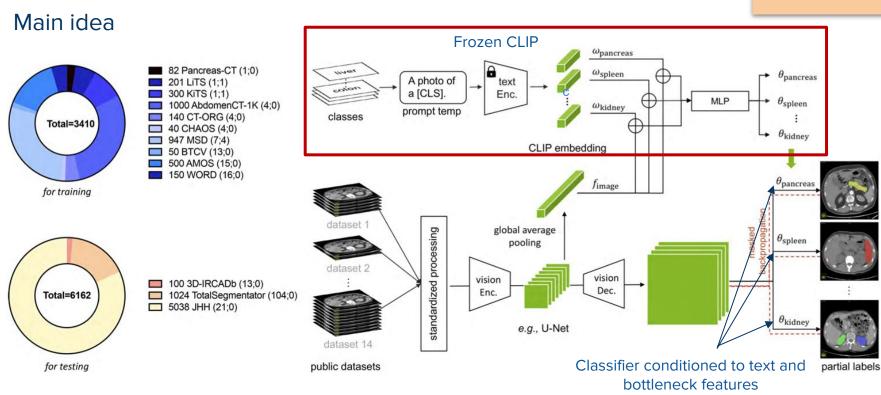
Main idea



CLIP-Driven

How to pre-train? CLIP-Driven

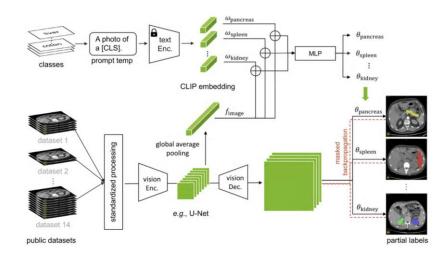
SuPreM



CLIP-Driven

How to pre-train? CLIP-Driven

SuPreM



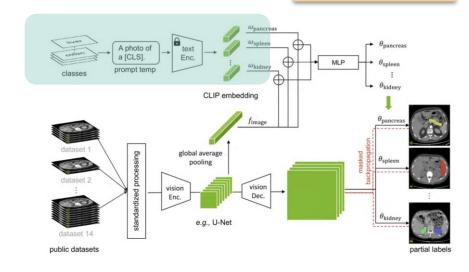
CLIP-Driven

How to pre-train? CLIP-Driven

SuPreM

Text branch (generates text embedding for class k)

 \mathbf{w}_k



CLIP-Driven

How to pre-train? CLIP-Driven

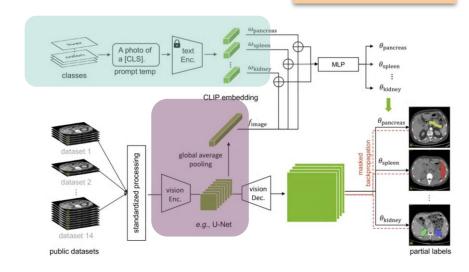
SuPreM

Text branch (generates text embedding for class k)

 \mathbf{w}_k

Visual branch-encoder (generates visual embedding for volume x)

 \mathbf{f}



CLIP-Driven

How to pre-train? CLIP-Driven

SuPreM

Text branch (generates text embedding for class k)

 \mathbf{w}_k

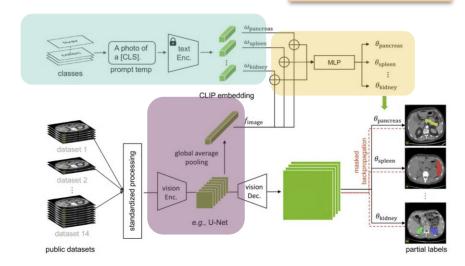
Visual branch-encoder (generates visual embedding for volume x)

 \mathbf{f}

Text-based controller MLP (generates class parameters)

$$\boldsymbol{\theta_k} = MLP(\mathbf{w}_k \oplus \mathbf{f})$$

$$oldsymbol{ heta}_k = \{oldsymbol{ heta}_{k_1}, oldsymbol{ heta}_{k_2}, oldsymbol{ heta}_{k_3}\}$$



CLIP-Driven

How to pre-train? CLIP-Driven

SuPreM

Text branch (generates text embedding for class k)

 \mathbf{w}_k

Visual branch-encoder (generates visual embedding for volume x)

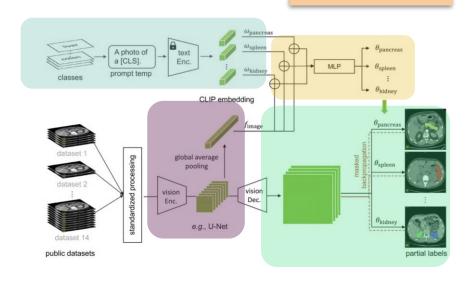
 \mathbf{f}

Text-based controller MLP (generates class parameters)

$$\boldsymbol{\theta_k} = MLP(\mathbf{w}_k \oplus \mathbf{f})$$

$$oldsymbol{ heta}_k = \{oldsymbol{ heta}_{k_1}, oldsymbol{ heta}_{k_2}, oldsymbol{ heta}_{k_3}\}$$

Visual branch-decoder (generates visual embedding for image x)



$$\mathbf{P}_k = \operatorname{sigmoid}(((\mathbf{F} * \boldsymbol{\theta}_{k_1}) * \boldsymbol{\theta}_{k_2}) * \boldsymbol{\theta}_{k_3})$$

CLIP-Driven

How to pre-train? CLIP-Driven

SuPreM

Text branch (generates text embedding for class k)

 \mathbf{w}_k

Visual branch-encoder (generates visual embedding for volume x)

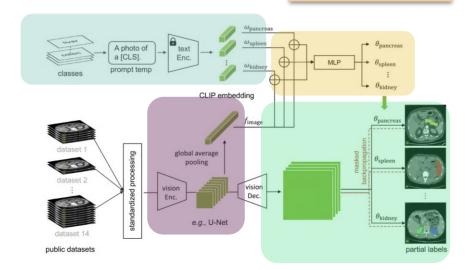
 \mathbf{f}

Text-based controller MLP (generates class parameters)

$$\boldsymbol{\theta_k} = MLP(\mathbf{w}_k \oplus \mathbf{f})$$

$$\boldsymbol{\theta}_k = \{ \boldsymbol{\theta}_{k_1}, \boldsymbol{\theta}_{k_2}, \boldsymbol{\theta}_{k_3} \}$$

Visual branch-decoder (generates visual embedding for image x)



$$\mathbf{P}_k = \operatorname{sigmoid}(((\mathbf{F} * \boldsymbol{\theta}_{k_1}) * \boldsymbol{\theta}_{k_2}) * \boldsymbol{\theta}_{k_3})$$

Training loss

$$\mathcal{L} = \sum_{k=1}^{K} \mathbf{1}_{\{k \in y\}} \cdot \mathrm{BCE}_k$$

CLIP-Driven

How to pre-train? CLIP-Driven

SuPreM

Text branch (generates text embedding for class k)

 \mathbf{w}_k

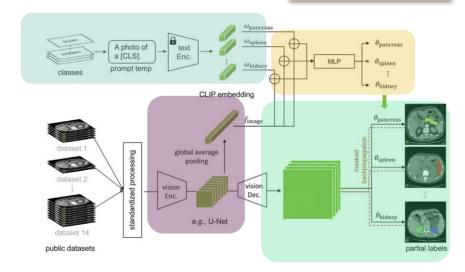
Visual branch-encoder (generates visual embedding for volume x)

Text-based controller MI P (generates class parameters)

$$\boldsymbol{\theta_k} = MLP(\mathbf{w}_k \oplus \mathbf{f})$$

$$oldsymbol{ heta}_k = \{oldsymbol{ heta}_{k_1}, oldsymbol{ heta}_{k_2}, oldsymbol{ heta}_{k_3}\}$$

Visual branch-decoder (generates visual embedding for image x)



$$\mathbf{P}_k = \operatorname{sigmoid}(((\mathbf{F} * \boldsymbol{\theta}_{k_1}) * \boldsymbol{\theta}_{k_2}) * \boldsymbol{\theta}_{k_3})$$

Training loss

$$\mathcal{L} = \sum_{k=1}^{K} \mathbf{1}_{\{k \in y\}} \cdot \mathrm{BCE}_k$$

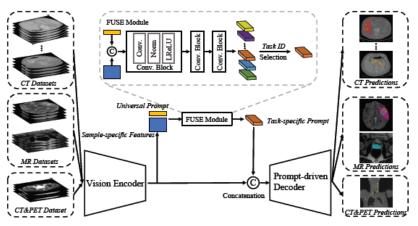
 $\mathcal{L} = \sum_{k=1}^{\infty} \mathbf{1}_{\{k \in y\}} \cdot \mathrm{BCE}_k \quad \Rightarrow \text{How can the text part contribute if using a frozen}$ generalist model?

UniSeg

How to pre-train? Prompt-Driven

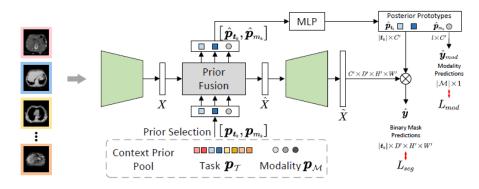
Hermes

Main idea



Ye et al. UniSeg: A Prompt-driven Universal Segmentation Model as well as A Strong Representation Learner. MICCAl'23.

- **Objective**: condition the segmentation to high level features related to **tasks/domains**.
- **Prompt selection** is a learnable operations to operate during **inference**.



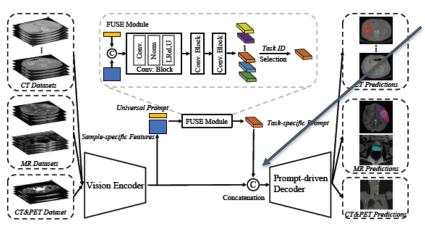
Gao et al. Training Like a Medical Resident: Context-Prior Learning Toward Universal Medical Image Segmentation. CVPR'24.

UniSeg

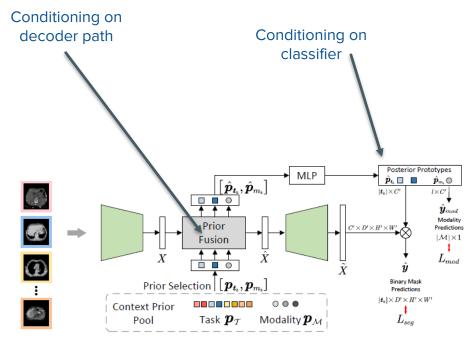
How to pre-train? Prompt-Driven

Hermes

Main idea



Ye et al. UniSeg: A Prompt-driven Universal Segmentation Model as well as A Strong Representation Learner. MICCAl'23.

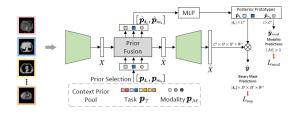


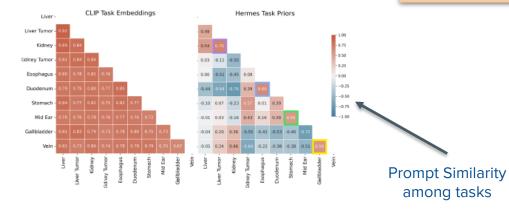
Gao et al. Training Like a Medical Resident: Context-Prior Learning Toward Universal Medical Image Segmentation. CVPR'24.

UniSeg

How to pre-train? Prompt-Driven

Hermes

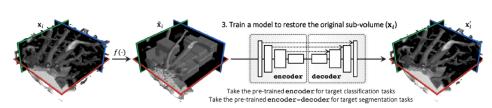




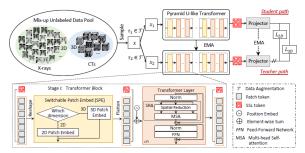
Setting	Model	1	1%	10	0%	5	0%	10	0%
		Pan	Tumor	Pan	Tumor	Pan	Tumor	Pan	Tumor
Scratch	ResUNet	44.60	7.67	74.47	23.90	78.89	44.52	80.45	51.06
	ResUNet (AMOS CT)	56.08	8.31	77.15	25.53	80.53	46.16	81.23	52.21
	ResUNet (KiTS)	52.68	9.28	75.11	27.33	79.07	45.72	79.23	50.64
	DeSD [60] (10,594 CT)	67.82	13.89	78.11	35.82	80.95	50.23	81.97	59.11
Transfer	DoDNet [63]	66.62	11.97	76.83	31.92	80.82	47.79	81.41	53.62
	CLIP-Driven [44]	67.95	12.12	77.49	32.37	80.92	48.92	81.45	54.71
	UniSeg [61]	69.05	12.35	77.33	33.87	80.93	49.63	81.96	55.58
	Hermes-R	72.71	16.73	79.12	44.31	81.14	55.31	82.73	61.41

How to pretrain? Self-supervised pre-training

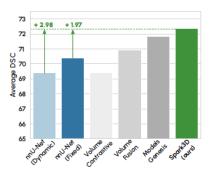
- → Producing quality annotations in volumetric scans is expensive and laborious.
- → Large amounts of unlabeled data are available (e.g., 5000 scans).
- → Different pretext tasks, but well-configured MAE seems to provide current SoTA.



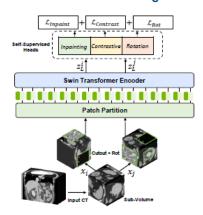
Zhou et al. Model Genesis. MedlA'21.



Xie et al. UniMiSS: Universal Medical Self-Supervised Learning via Breaking Dimensionality Barrier. ECCV'22.



Wald et al. Revisiting MAE pretraining for 3D medical image segmentation. CVPR'25.



Tang et al. Self-Supervised Pre-Training of Swin Transformers for 3D Medical Image Analysis. CVPR'22.

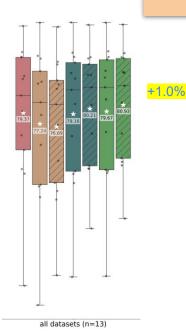
SuPreM

MultiTalent

Benefits of supervised foundation models?

- × Transferability via full fine-tuning of the pre-trained model.
- × Access to hundreds of labeled volumes for adaptation.
- × Does not leverage its knowledge on known categories.

	name	backbone	params	pre-trained data	performance†	
	Models Genesis (Zhou et al., 2019) UniMiSS (Xie et al., 2022)	U-Net nnU-Net	19.08M 61.79M	623 CT volumes 5,022 CT&MRI volumes	90.1 92.9	-
self- supervised	NV* NV* NV (Tang et al., 2022) NV*	Swin UNETR Swin UNETR Swin UNETR Swin UNETR Swin UNETR	62.19M 62.19M 62.19M 62.19M 62.19M	1,000 CT volumes 3,000 CT volumes 5,050 CT volumes 5,050 CT volumes 9,262 CT volumes	93.2 93.4 93.8 94.2 94.3	-
! ! ! supervised !	Med3D (Chen et al., 2019b) DoDNet (Zhang et al., 2021) DoDNet* Universal Model (Liu et al., 2023b) Universal Model (Liu et al., 2023b)	Residual U-Net U-Net U-Net U-Net Swin UNETR	85.75M 17.29M 17.29M 19.08M 62.19M	1,638 CT volumes 920 CT volumes 920 CT volumes 2,100 CT volumes 2,100 CT volumes	91.4 93.8 94.4 - 94.1	- ·0.8
•	SuPreM* SuPreM* SuPreM*	U-Net Swin UNETR SegResNet	19.08M 62.19M 470.13M	2,100 CT volumes 2,100 CT volumes 2,100 CT volumes	95.4 94.6 94.0	-



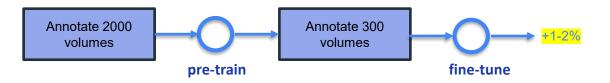
Ulrich et al. MultiTalent: A Multi-Dataset Approach to Medical Image Segmentation. MICCAl'23.

SuPreM

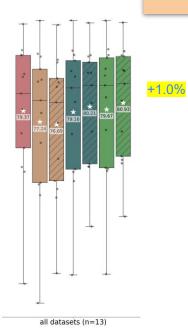
MultiTalent

Benefits of supervised foundation models?

- × Transferability via full fine-tuning of the pre-trained model.
- × Access to hundreds of labeled volumes for adaptation.
- × Does not leverage its knowledge on known categories.



	name	backbone	params	pre-trained data	performance†
	Models Genesis (Zhou et al., 2019) UniMiSS (Xie et al., 2022)	U-Net nnU-Net	19.08M 61.79M	623 CT volumes 5,022 CT&MRI volumes	90.1 92.9
self- supervised	NV* NV* NV (Tang et al., 2022) NV*	Swin UNETR Swin UNETR Swin UNETR Swin UNETR Swin UNETR	62.19M 62.19M 62.19M 62.19M 62.19M	1,000 CT volumes 3,000 CT volumes 5,050 CT volumes 5,050 CT volumes 9,262 CT volumes	93.2 93.4 93.8 94.2 94.3
supervised	Med3D (Chen et al., 2019b) DoDNet (Zhang et al., 2021) DoDNet* Universal Model (Liu et al., 2023b) Universal Model (Liu et al., 2023b)	Residual U-Net U-Net U-Net U-Net Swin UNETR	85.75M 17.29M 17.29M 19.08M 62.19M	1,638 CT volumes 920 CT volumes 920 CT volumes 2,100 CT volumes 2,100 CT volumes	91.4 93.8 94.4 - 94.1
	SuPreM* SuPreM* SuPreM*	U-Net Swin UNETR SegResNet	19.08M 62.19M 470.13M	2,100 CT volumes 2,100 CT volumes 2,100 CT volumes	95.4 94.6 94.0

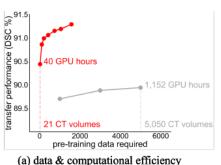


Ulrich et al. MultiTalent: A Multi-Dataset Approach to Medical Image Segmentation. MICCAl'23.

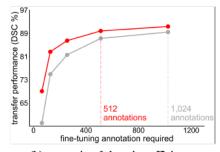
SuPreM

Benefits of supervised foundation models

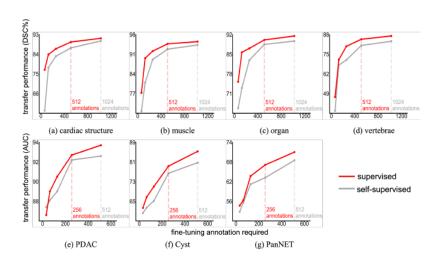
- → SuPreM models are pre-trained on a curated dataset with 25 fully-annotated structures.
 - ✓ Supervised pre-training is orders of magnitude more data-efficient than self-supervision.
 - ✓ This holds even when transferring to unseen structures.



a) data & computational efficiency in *pre-training*

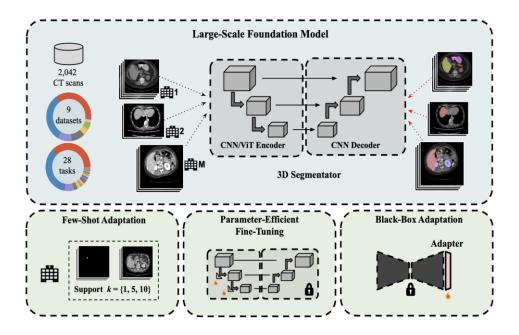


(b) annotation & learning efficiency in *fine-tuning*



Few-Shot Efficient Fine-Tuning

Main idea (how to adapt a pre-trained large-scale model efficiently)

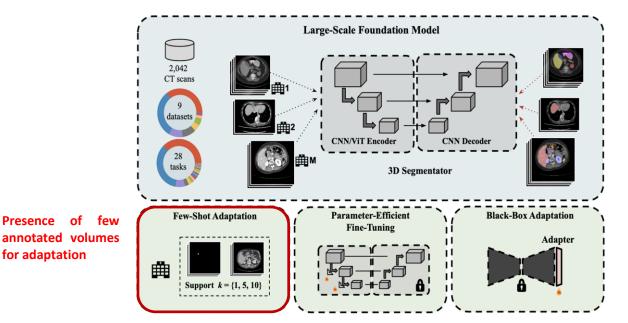


Few-Shot Efficient Fine-Tuning

Main idea (how to adapt a pre-trained large-scale model efficiently)

Presence

for adaptation



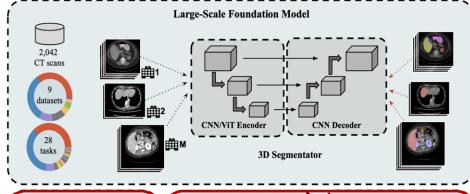
FSEFT

93

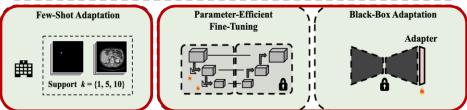
FSEFT

Few-Shot Efficient Fine-Tuning

Main idea (how to adapt a pre-trained large-scale model efficiently)



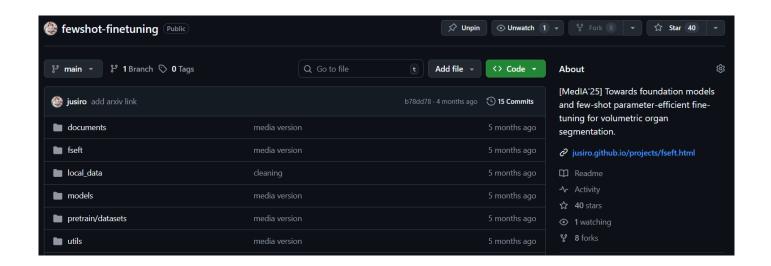
Presence of few annotated volumes for adaptation



Being computationally efficient, allowing for commodity GPUs

Adaptation code and model weights publicly available

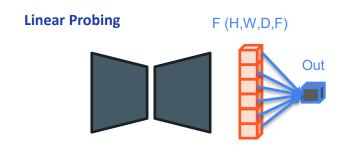
https://github.com/jusiro/fewshot-finetuning

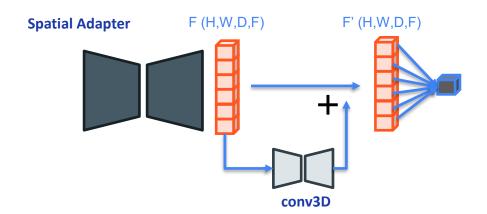


FSEFT

Few-Shot Efficient Fine-Tuning

Black-box Adapters

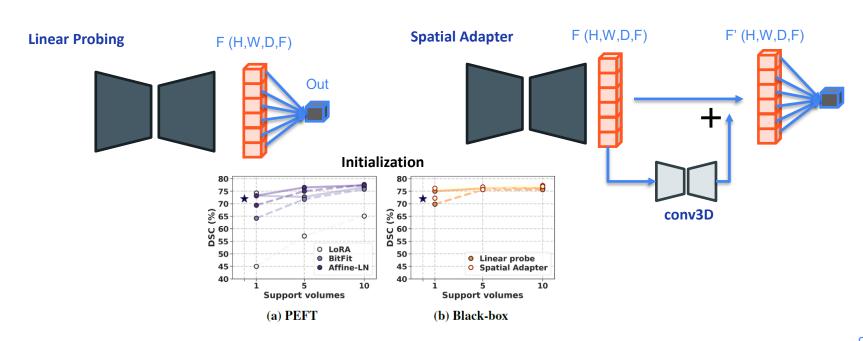




FSEFT

Few-Shot Efficient Fine-Tuning

Black-box Adapters

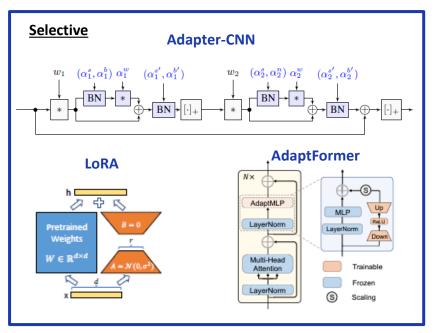


FSEFT

Few-Shot Efficient Fine-Tuning

•

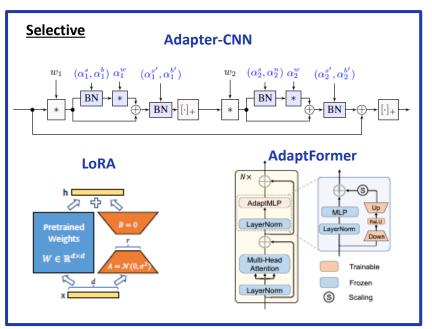
Parameter-Efficient Fine-Tuning (for the Encoder)

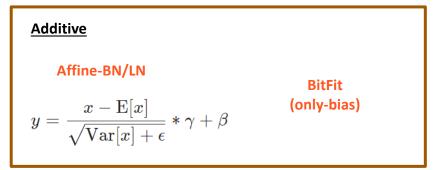


FSEFT

Few-Shot Efficient Fine-Tuning

Parameter-Efficient Fine-Tuning (for the Encoder)

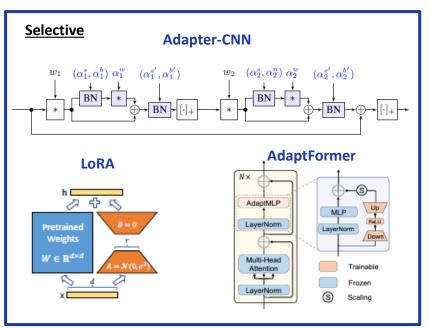




FSEFT

Few-Shot Efficient Fine-Tuning

Parameter-Efficient Fine-Tuning (for the Encoder)



Additive

Affine-BN/LN

$$y = \frac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta$$

BitFit (only-bias)

What to do with the Decoder?

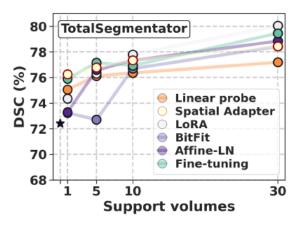
(millions of paramerers)

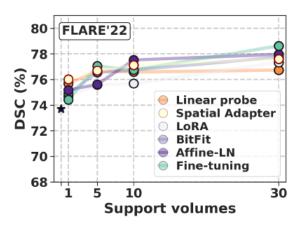
- → Base categories: frozen.
- → New categories: fine-tuned

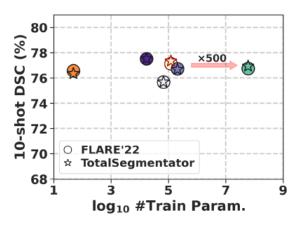
FSEFT

Few-Shot Efficient Fine-Tuning

Transferability to known tasks (domain shift)







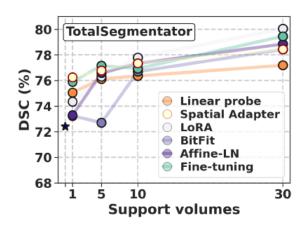
(a) Data-efficient adaptation

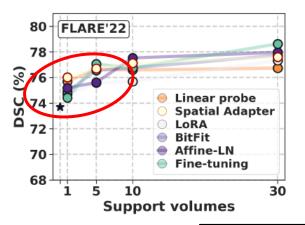
(b) Parameter efficiency

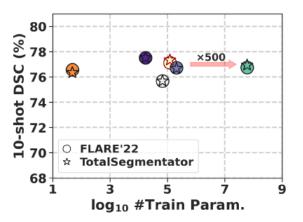
FSEFT

Few-Shot Efficient Fine-Tuning

Transferability to known tasks (domain shift)







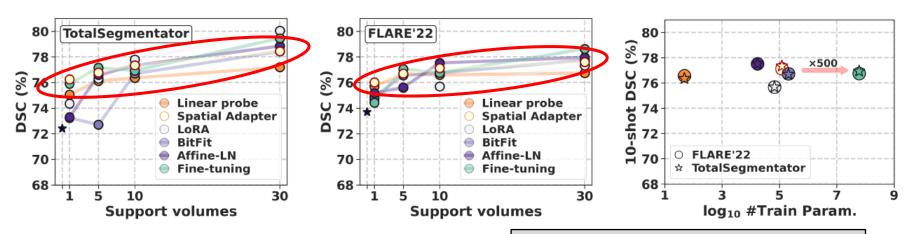
(a) Data-efficient adaptation

Fine-tuning is not always the best but interestingly is competitive.

FSEFT

Few-Shot Efficient Fine-Tuning

Transferability to known tasks (domain shift)



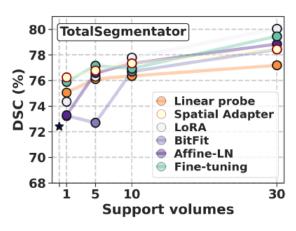
(a) Data-efficient adaptation

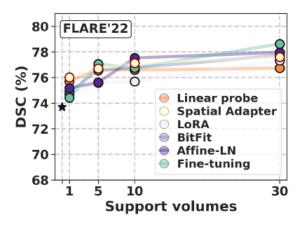
Black-box methods are competitive in the very low-shot regime.

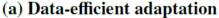
FSEFT

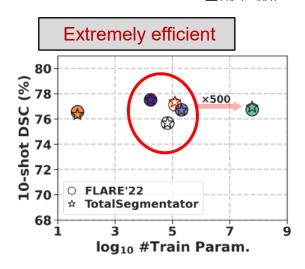
Few-Shot Efficient Fine-Tuning

Transferability to known tasks (domain shift)









(b) Parameter efficiency

FSEFT

Few-Shot Efficient Fine-Tuning

Transferability to known tasks (domain shift)

Method	Category	TotalSegr	mentator	FLARI	E'22
		#Param.	T(min)	#Param.	T(min)
Fine-tuning (Tang et al.) [2022) Fine-tuning (Ours)	FULL	62.1M 62.1M	15 8	62.1M 62.1M	50 35
Decoder Bitfit (Ben-Zaken et al., 2021) LoRA (Hu et al., 2022) AdaptFormer (Chen et al., 2022a) Affine-LN (Basu et al., 2024)	PEFT	19.6M 210.7K 68.1K 47.6K 17.3K	7 5 6 7 5	19.6M 211.1K 69.4K 48.1K 17.7K	32 29 25 24 25
Linear probe Spatial Adapter	ВВ	49 124.4K	4 5	490 124.9K	7 11



(b) Parameter efficiency

FSEFT

Few-Shot Efficient Fine-Tuning

•

Transferability to known tasks (domain shift)

Spatial Adapter

Setti	ng	Method	Spl	lKid	Gall	Eso	Liv	Pan	Sto	Duo	Aor	Avg.	
		CNN-Adapter (Rebuffi et al., 2018)	47.69	39.58	40.52	53.05	55.08	43.17	28.47	35.73	84.62	47.55	
	PEFT	Bias (Cai et al., 2020)	71.16	69.54	70.16	55.86	71.03	79.60	51.25	69.04	88.92	69.62	
5-shot		Affine-BN (Frankle et al., 2021)	69.22	72.33	65.66	52.68	67.61	75.50	45.08	66.52	86.94	66.84	
3-81100	BB	Linear probe	93.91	75.59	75.94	50.50	80.29	68.19	57.18	77.18	88.48	74.14	
	ББ	Spatial Adapter	91.78	77.71	80.89	52.30	90.00	78.83	83.27	80.37	89.08	80.47	Black-box methods hold their
		CNN-Adapter (Rebuffi et al., 2018)	57.32	61.79	42.96	55.61	52.21	52.77	39.96	34.97	89.26	54.09	
	PEFT	Bias (Cai et al., 2020)	72.79	76.14	83.37	59.65	73.97	79.68	60.65	73.46	92.80	74.72	performance when directly
10-shot		Affine-BN (Frankle et al., 2021)	72.15	74.06	77.15	58.65	72.31	77.08	61.74	63.94	92.43	72.17	l'
10-81101	BB	Linear probe	91.22	75.63	77.48	50.02	80.87	69.17	56.28	77.63	85.29	73.73	applied to SuPreM models
	DD	Spatial Adapter	95.40	83.76	81.29	52.49	90.75	78.57	81.97	81.09	90.33	81.74	
													l and 2D CNNa

(a) 3D-UNet

Sett	ing	Method	Spl	1Kid	Gall	Eso	Liv	Pan	Sto	Duo	Aor	Avg.
		BitFit (Ben-Zaken et al., 2021)	88.76	85.91	79.42	50.22	92.17	73.64	62.81	69.30	90.82	77.01
	PEFT	LoRA (Hu et al., 2022)	61.31	46.52	52.50	46.43	80.50	66.86	38.66	54.15	73.33	57.81
5 -14	PEFI	AdaptFormer (Chen et al., 2022a)	87.57	86.05	60.17	51.79	90.11	76.73	68.29	74.49	93.12	76.48
5-shot		Affine-LN (Basu et al., 2024)	88.14	83.81	76.10	50.04	91.89	75.46	64.41	71.91	90.91	76.96
		Linear probe	94.62	91.86	$-8\overline{2.98}$	49.29	93.54	78.86	72.43	$-77.3\overline{0}$	88.77	81.07
	BB	Spatial Adapter	95.34	88.13	85.08	55.56	94.27	78.84	75.33	78.17	87.40	82.01
		BitFit (Ben-Zaken et al., 2021)	95.16	86.54	84.86	56.93	93.58	72.03	69.26	75.47	90.44	80.47
	PEFT	LoRA (Hu et al., 2022)	63.97	54.53	59.25	55.33	84.03	77.72	58.72	73.89	80.59	67.56
10-shot	PEFI	AdaptFormer (Chen et al., 2022a)	91.36	84.03	77.78	54.10	93.14	76.05	70.08	77.58	93.25	79.71
10-snot		Affine-LN (Basu et al., 2024)	87.21	87.36	80.84	55.80	93.65	76.98	66.78	75.66	92.50	79.64
		Linear probe	95 26	91.63	87 15	52 69	93 37	- 69 93 -	7170	-77.20	8870	80 29

and 3D CNNs.

(b) Swin-UNETR

FSEFT

Few-Shot Efficient Fine-Tuning

Transferability to <u>novel tasks</u> (new organs)

Setting	Method	Lung*	Heart [†]	Gluteus [‡]	Avg.
17111	Fine-tuning (Tang et al., 2022)	19.59	53.14	55.37	42.70
FULL	Fine-tuning (Ours)	31.01	60.79	65.35	52.38
	BitFit (Ben-Zaken et al., 2021)	14.79	48.90	39.43	34.28
	LoRA (Hu et al., 2022)	13.80	50.55	46.36	38.49
PEFT	AdaptFormer (Chen et al., 2022a)	18.82	53.35	48.61	40.26
FEFT	Affine-LN (Basu et al., 2024)	16.92	58.38	46.07	40.46
	Decoder fine-tuning	25.98	65.69	64.23	51.97
	+BitFit (Ben-Zaken et al., 2021)	26.17	65.78	64.34	52.10
	+LoRA (Hu et al., 2022)	26.16	76.12	69.89	57.39
	+AdaptFormer (Chen et al., 2022a)	23.84	72.32	69.79	55.32
	+Affine-LN (Basu et al., 2024)	26.00	65 01	64.53	52.18
BB	Linear Probe	9.35	9.19	7.52	8.68
DD	Spatial Adapter	10.08	14.66	12.75	12.50

^{*} Avg. of five: upper/lower lobe left, upper/lower lobe right, middle lobe.

Black-box methods are not competitive.

[†] Avg. of five: myocardium, atrium/ventricle left, atrium/verticle right.

[‡] Avg. of six: maximus left/right, medius left/right, minimus left/right.

FSEFT

Few-Shot Efficient Fine-Tuning

•

Transferability to <u>novel tasks</u> (new organs)

Setting	Method	Lung*	Heart [†]	Gluteus [‡]	Avg.
FULL	Fine-tuning (Tang et al., 2022)	19.59	53.14	55.37	42.70
FULL	Fine-tuning (Ours)	31.01	60.79	65.35	52.38
	BitFit (Ben-Zaken et al., 2021)	14.79	48.90	39.43	34.28
	LoRA (Hu et al., 2022)	13.80	50.55	46.36	38.49
DEEE	AdaptFormer (Chen et al., 2022a)	18.82	53.35	48.61	40.26
PEFT	Affine-LN (Basu et al., 2024)	16.92	58.38	46.07	40.46
	Decoder fine-tuning	25.98	65.69	64.23	51.97
	+RitFit (Ren_Zaken et al. 2021)	26.17	65.78	64 34	52 10
	+LoRA (Hu et al., 2022)	26.16	76.12	69.89	57.39
	+AdaptFormer (Chen et al., 2022a)	23.84	72.32	69.79	55.32
	+Affine-LN (Basu et al., 2024)	26.09	65.91	64.53	52.18
BB	Linear Probe	9.35	9.19	7.52	8.68
DD	Spatial Adapter	10.08	14.66	12.75	12.50

Additive PEFT outperform Selective methods

^{*} Avg. of five: upper/lower lobe left, upper/lower lobe right, middle lobe.

[†] Avg. of five: myocardium, atrium/ventricle left, atrium/verticle right.

[‡] Avg. of six: maximus left/right, medius left/right, minimus left/right.

FSEFT

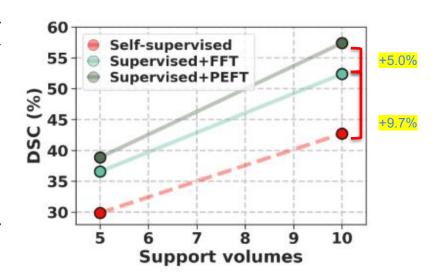
Few-Shot Efficient Fine-Tuning

•

Transferability to <u>novel tasks</u> (new organs)

Setting	Method	Lung*	Heart [†]	Gluteus [‡]	Avg.
171111	Fine-tuning (Tang et al., 2022)	19.59	53.14	55.37	42.70
FULL	Fine-tuning (Ours)	31.01	60.79	65.35	52.38
	BitFit (Ben-Zaken et al., 2021)	14.79	48.90	39.43	34.28
	LoRA (Hu et al., 2022)	13.80	50.55	46.36	38.49
PEFT	AdaptFormer (Chen et al., 2022a)	18.82	53.35	48.61	40.26
FEFT	Affine-LN (Basu et al., 2024)	16.92	58.38	46.07	40.46
	Decoder fine-tuning	25.98	65.69	64.23	51.97
	+BitFit (Ben-Zaken et al., 2021)	26.17	65.78	64.34	52.10
	+LoRA (Hu et al., 2022)	26.16	76.12	69.89	57.39
	+AdaptFormer (Chen et al., 2022a)	23.84	72.32	69.79	55.32
	+Affine-LN (Basu et al., 2024)	26.09	65.91	64.53	52.18
BB	Linear Probe	9.35	9.19	7.52	8.68
DD	Spatial Adapter	10.08	14.66	12.75	12.50

^{*} Avg. of five: upper/lower lobe left, upper/lower lobe right, middle lobe.



[†] Avg. of five: myocardium, atrium/ventricle left, atrium/verticle right.

[‡] Avg. of six: maximus left/right, medius left/right, minimus left/right.

ARENA

Few-Shot Efficient Fine-Tuning

Challenges of PEFT in low-shot regimes

				Nat	tural					Sj	pecializ	ed					5	Structur	ed					<u>«</u>
Method	CIFAR-100	Caltech 101	DTD	Flowers 102	Pets	SVHN	Sun397	Mean	Camelyon	EuroSAT	Resisc45	Retinopathy	Mean	Clevr-Count	Clevr-Dist	DMLab	KITTI-Dist	dSpr-Loc	dSpr-Ori	sNORB-Azim	sNORB-Elev	Mean	Overall Mean	Tunable Params
Linear Full	78.1 62.4	86.6 89.9	65.7 61.9	98.9 97.4	89.3 85.8	41.5 88.9	53.2 36.8		83.1 81.6	90.0 88.1	74.9 81.6	74.6 73.6	80.6 81.2	37.5 56.2	35.1 60.9	36.5 48.2	64.6 77.9	16.2 68.5	29.4 46.6	17.3 31.0	23.7 28.3	32.5 52.2	61.9 70.0	0 85.8
VPT-Shallow VPT-Deep	80.2 84.8	88.7 91.5	67.9 69.4	99.1 99.1	89.6 91.0	77.0 85.6	54.2 54.7		81.8 86.4	90.3 94.9	77.2 84.2	74.4 73.9		42.2 79.3	52.4 62.4	38 48.5	66.5 77.9	52.4 80.3	43.1 56.4	15.2 33.2	23.2 43.8	41.6 60.2	67.3 75.6	0.07 0.43
BitFit DiffFit LayerNorm SSF	86.5 86.3 86.0 86.6	90.5 90.2 89.7 89.8	70.3 71.2 72.2 68.8	98.9 99.2 99.1 99.1	91.0 91.7 91.4 91.4	91.2 91.2 90.0 91.2	56.1	83.2	86.7 85.8 84.7 86.1	95.0 94.1 93.8 94.5	85.3 80.9 83.0 83.2	75.5 75.2 75.2 74.8	84.0 84.2	77.2 80.1 77.5 80.1	63.2 63.4 62.2 63.6	51.2 50.9 49.9 53.0	79.2 81.0 78.1 81.4	78.6 77.8 78.0 85.6	53.9 52.8 52.1 52.1	30.1 30.7 24.3 31.9	35.5 34.4	58.5 59.0 57.1 60.6	75.6 75.4 74.7 76.0	0.1 0.14 0.04 0.21
Pfeif. Adapter Houl. Adapter AdaptFormer RepAdapter Convpass	86.3 84.3 85.8 86.0 85.0	91.5 92.1 91.8 92.5 92.1	72.1 72.3 70.5 69.1 72.0	99.2 98 99.2 99.1 99.3	91.4 91.7 91.8 90.9 91.3	88.5 90.0 89.4 90.9 90.8	55.7 55.4 56.7 55.4 55.9	83.2	86.2 88.7 86.8 86.9 87.7	95.5 95.3 95.0 95.3 95.8	85.3 86.5 86.5 86.0 85.9	75.4	86.2	83.1 82.9 82.9 82.5 82.3	65.2 63.6 64.1 63.5 65.2	51.4 53.8 52.8 51.4 53.8	80.2 79.6 80.0 80.2 78.1	83.3 84.4 84.7 85.4 86.5	56.6 54.3 53.0 52.1 55.3	33.8 34.2 33.0 35.7 38.6	41.7	61.5	76.9 77.2 76.9 76.8 77.6	0.67 0.77 0.46 0.53 0.49
LoRA FacT_TT FacT_TK	85.7 85.8 86.2	92.6 91.8 92.5	69.8 71.5 71.8	99.1 99.3 99.1	90.5 91.1 90.1	88.5 90.8 91.2	55.9	82.6 83.4 83.4	87.5 87.7 85.8	94.9 94.9 95.5	85.9 85.0 86.0	75.7 75.6 75.7		82.9 83.0 82.7	63.9 64.0 65.1	51.8 49.0 51.5	79.9 79.3 78.9	86.6 85.8 86.7	47.2 53.1 53.1	33.4 32.8 27.8	43.7	61.0 61.3 60.8	76.5 76.8 76.6	0.55 0.13 0.23
Relative Std Dev	0.81	1.13	1.78	0.34	0.54	1.82	1.24	0.54	1.20	0.59	1.95	0.83	0.94	2.67	1.50	3.22	1.37	4.11	4.46	11.02	9.30	2.70	1.09	-

ARENA

Few-Shot Efficient Fine-Tuning

Challenges of PEFT in low-shot regimes

				Nat	tural					Sp	ecializ	ed					5	Structur	ed	-				S
Method	CIFAR-100	Caltech 101	DTD	Flowers102	Pets	SVHN	Sun397	Mean	Camelyon	EuroSAT	Resisc45	Retinopathy	Mean	Clevr-Count	Clevr-Dist	DMLab	KITTI-Dist	dSpr-Loc	dS pr-Ori	sNORB-Azim	sNORB-Elev	Mean	Overall Mean	Tunable Params
Linear Full	78.1 62.4	86.6 89.9	65.7 61.9	98.9 97.4	89.3 85.8	41.5 88.9	53.2 72 36.8 76		33.1 31.6	90.0 88.1	74.9 81.6	74.6 73.6		37.5 56.2	35.1 60.9	36.5 48.2	64.6 77.9	16.2 68.5	29.4 46.6	17.3 31.0	23.7 28.3	32.5 52.2	61.9 70.0	0 85.8
VPT-Shallow VPT-Deep	80.2 84.8	88.7 91.5	67.9 69.4	99.1 99.1	89.6 91.0	77.0 85.6	54.2 79 54.7 8		31.8 36.4	90.3 94.9	77.2 84.2	74.4 73.9		42.2 79.3	52.4 62.4	38 48.5	66.5 77.9	52.4 80.3	43.1 56.4	15.2 33.2	23.2 43.8	41.6 60.2	67.3 75.6	0.07 0.43
BitFit DiffFit LayerNorm SSF	86.5 86.3 86.0 86.6	90.5 90.2 89.7 89.8	70.3 71.2 72.2 68.8	98.9 99.2 99.1 99.1	91.0 91.7 91.4 91.4	91.2 91.2 90.0 91.2	56.1 83	3.2 3.0 8	36.7 35.8 34.7 36.1	95.0 94.1 93.8 94.5	85.3 80.9 83.0 83.2	75.5 75.2 75.2 74.8	84.0 84.2	77.2 80.1 77.5 80.1	63.2 63.4 62.2 63.6	51.2 50.9 49.9 53.0	79.2 81.0 78.1 81.4	78.6 77.8 78.0 85.6	53.9 52.8 52.1 52.1	30.1 30.7 24.3 31.9	34.4	59.0	75.6 75.4 74.7 76.0	0.1 0.14 0.04 0.21
Pfeif. Adapter Houl. Adapter AdaptFormer RepAdapter Convpass	86.3 84.3 85.8 86.0 85.0	91.5 92.1 91.8 92.5 92.1	72.1 72.3 70.5 69.1 72.0	99.2 98 99.2 99.1 99.3	91.4 91.7 91.8 90.9 91.3	88.5 90.0 89.4 90.9 90.8	55.4 83 56.7 83	3.2 8 3.2 8 2.9 8	36.2 38.7 36.8 36.9 37.7	95.5 95.3 95.0 95.3 95.8	85.3 86.5 86.5 86.0 85.9	76.2 75.2 76.3 75.4 75.9	86.2 85.9	83.1 82.9 82.9 82.5 82.3	65.2 63.6 64.1 63.5 65.2	51.4 53.8 52.8 51.4 53.8	80.2 79.6 80.0 80.2 78.1	83.3 84.4 84.7 85.4 86.5	56.6 54.3 53.0 52.1 55.3	33.8 34.2 33.0 35.7 38.6	41.1 44.3 41.4 41.7 45.1	61.5 61.6	76.9 77.2 76.9 76.8 77.6	0.67 0.77 0.46 0.53 0.49
LoRA FacT_TT FacT_TK	85.7 85.8 86.2	92.6 91.8 92.5	69.8 71.5 71.8	99.1 99.3 99.1	90.5 91.1 90.1	88.5 90.8 91.2	55.5 82 55.9 83 56.2 83	3.4 8	37.5 37.7 35.8	94.9 94.9 95.5	85.9 85.0 86.0	75.7 75.6 75.7	85.8	82.9 83.0 82.7	63.9 64.0 65.1	51.8 49.0 51.5	79.9 79.3 78.9	86.6 85.8 86.7	47.2 53.1 53.1	33.4 32.8 27.8	43.7	61.0 61.3 60.8	76.5 76.8 76.6	0.55 0.13 0.23
Relative Std Dev	0.81	1.13	1.78	0.34	0.54	1.82	1.24 0.	54 1	1.20	0.59	1.95	0.83	0.94	2.67	1.50	3.22	1.37	4.11	4.46	11.02	9.30	2.70	1.09	-

ARENA

Few-Shot Efficient Fine-Tuning

Challenges of PEFT in low-shot regimes

With careful hyper-parameter tuning, all PEFT methods perform similar in average.

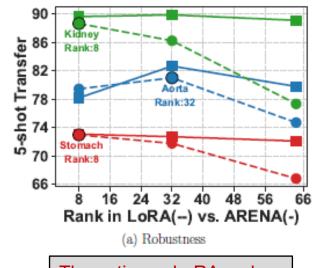
				Nat	ural					Sį	ecializ	ed					5	Structur	ed					<u>s</u>
Method	CIFAR-100	Caltech 101	DTD	Flowers102	Pets	NHAS	Sun397	Mean	Camelyon	EuroSAT	Resisc45	Retinopathy	Mean	Clevr-Count	Clevr-Dist	DMLab	KITTI-Dist	dSpr-Loc	dSpr-Ori	sNORB-Azim	sNORB-Elev	Mean	Overall Mean	Tunable Params
Linear Full	78.1 62.4	86.6 89.9	65.7 61.9	98.9 97.4	89.3 85.8	41.5 88.9	53.2 36.8	72.5 76.7	83.1 81.6	90.0 88.1	74.9 81.6	74.6 73.6	80.6 81.2	37.5 56.2	35.1 60.9	36.5 48.2	64.6 77.9	16.2 68.5	29.4 46.6	17.3 31.0	23.7 28.3	32.5 52.2	61.9 70.0	0 85.8
VPT-Shallow VPT-Deep	80.2 84.8	88.7 91.5	67.9 69.4	99.1 99.1	89.6 91.0	77.0 85.6	54.2 54.7	79.4 81.8	81.8 86.4	90.3 94.9	77.2 84.2	74.4 73.9		42.2 79.3	52.4 62.4	38 48.5	66.5 77.9	52.4 80.3	43.1 56.4	15.2 33.2		41.6 60.2	67.3 75.6	0.07 0.43
BitFit DiffFit LayerNorm SSF	86.5 86.3 86.0 86.6	90.5 90.2 89.7 89.8	70.3 71.2 72.2 68.8	98.9 99.2 99.1 99.1	91.0 91.7 91.4 91.4	91.2 91.2 90.0 91.2	56.1	82.6 83.2 83.0 82.8	86.7 85.8 84.7 86.1	95.0 94.1 93.8 94.5	85.3 80.9 83.0 83.2	75.5 75.2 75.2 74.8	84.0 84.2	77.2 80.1 77.5 80.1	63.2 63.4 62.2 63.6	51.2 50.9 49.9 53.0	79.2 81.0 78.1 81.4	78.6 77.8 78.0 85.6	53.9 52.8 52.1 52.1	30.1 30.7 24.3 31.9	34.4	59.0	75.6 75.4 74.7 76.0	0.1 0.14 0.04 0.21
Pfeif. Adapter Houl. Adapter AdaptFormer RepAdapter Convpass	86.3 84.3 85.8 86.0 85.0	91.5 92.1 91.8 92.5 92.1	72.1 72.3 70.5 69.1 72.0	99.2 98 99.2 99.1 99.3	91.4 91.7 91.8 90.9 91.3	88.5 90.0 89.4 90.9 90.8	55.4	83.2	86.2 88.7 86.8 86.9 87.7	95.5 95.3 95.0 95.3 95.8	85.3 86.5 86.5 86.0 85.9	75.4	86.4 86.2	83.1 82.9 82.9 82.5 82.3	65.2 63.6 64.1 63.5 65.2	51.4 53.8 52.8 51.4 53.8	80.2 79.6 80.0 80.2 78.1	83.3 84.4 84.7 85.4 86.5	56.6 54.3 53.0 52.1 55.3	33.8 34.2 33.0 35.7 38.6	44.3 41.4 41.7	l	76.9 77.2 76.9 76.8 77.6	0.67 0.77 0.46 0.53 0.49
LoRA FacT_TT FacT_TK	85.7 85.8 86.2	92.6 91.8 92.5	69.8 71.5 71.8	99.1 99.3 99.1	90.5 91.1 90.1	88.5 90.8 91.2	55.9	82.6 83.4 83.4	87.5 87.7 85.8	94.9 94.9 95.5	85.9 85.0 86.0	75.7 75.6 75.7		82.9 83.0 82.7	63.9 64.0 65.1	51.8 49.0 51.5	79.9 79.3 78.9	86.6 85.8 86.7	47.2 53.1 53.1	33.4 32.8 27.8	43.7	61.0 61.3 60.8	76.5 76.8 76.6	0.55 0.13 0.23
Relative Std Dev	0.81	1.13	1.78	0.34	0.54	1.82	1.24	0.54	1.20	0.59	1.95	0.83	0.94	2.67	1.50	3.22	1.37	4.11	4.46	11.02	9.30	2.70	1.09	-

ARENA

Few-Shot Efficient Fine-Tuning

•

Challenges of PEFT in low-shot regimes



The optimum LoRA rank varies per task.

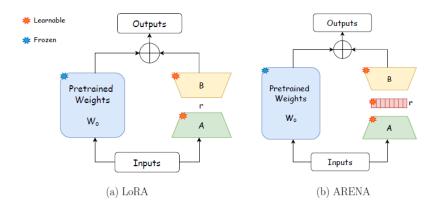
$$W = W_0 + \Delta W = W_0 + BA$$
$$A \in \mathbb{R}^{r \times n}$$
$$B \in \mathbb{R}^{m \times r}$$
$$r << (m, n)$$

ARENA

Few-Shot Efficient Fine-Tuning

Adaptive Low-rank adaptation

$$W = W_0 + \Delta W = W_0 + B \operatorname{Diag}(v) A$$



The number of non-zero elements of the vector of diagonal elements determine de rank of the decomposition

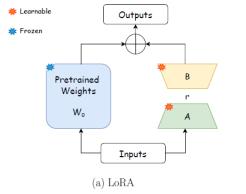
 $\|v\|_0$

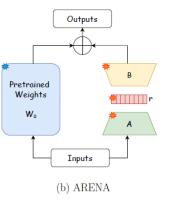
ARENA

Few-Shot Efficient Fine-Tuning

Adaptive Low-rank adaptation

$$W = W_0 + \Delta W = W_0 + B \operatorname{Diag}(v) A$$





The number of non-zero elements of the vector of diagonal elements determine de rank of the decomposition

 $\|v\|_0$

$$\mathcal{L}(A,B,v) + \lambda \|v\|_1$$

11 encourages vector sparsity

Loss function of the task

Few-Shot Efficient Fine-Tuning

Transferability to known tasks (domain shift)

	Method	Spl	lKid	Gall	Eso	Liv	Pan	Sto	Duo	Aor	Avg.
10-shot	Linear probe BitFit [33] Affine-LN [1] FFT	$91.72 \\ 90.85 \\ \underline{92.20} \\ 89.61$	89.78 87.68 86.02 84.79	78.49 75.92 79.58 76.07	47.01 47.92 50.27 56.82	92.16 91.85 89.98 90.89	78.14 79.83 77.64 74.87	76.80 66.35 69.15 60.78	63.63 64.10 <u>67.64</u> 71.29	69.91 77.98 83.53 91.81	76.40 75.83 77.33 77.44
	LoRA [15] ARENA (Ours)	89.94 92.28	89.47 89.58	80.65 84.49	46.11 50.83	92.94 93.01	81.18 80.27	66.41 68.35	61.76 62.95	81.66 82.46	76.68 78.25

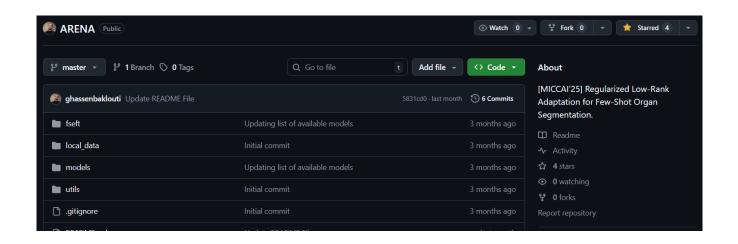
Transferability to <u>novel tasks</u> (new organs)

	Method	MYO	LA	RA	LV	RV	Avg.
10-shot	Linear probe BitFit [33] Affine-LN [1] FFT LORA [15]	64.50 64.18 64.39 59.07 60.31	63.47 64.15 63.62 54.05 65.2	66.86 66.35 67.95 63.06 78.44	69.12 69.79 69.93 64.38 64.05	62.60 62.61 63.66 59.50 65.29	65.31 64.42 65.91 60.01
	ARENA (Ours)	75.29	81.8	82.93	74.2	74.82	77.81

ARENA

Adaptation code and model weights publicly available

https://github.com/ghassenbaklouti/ARENA



Challenges and future

- 1. Model selection in low-shot regimes: we need to facilitate the adaptation/fine-tuning stage to practitioners.
- 2. How to know a priori if using black-box Adapters, or PEFT. Which PEFT method to use?
- 3. Improving PEFT for convolutional architectures, e.g., nnUnet/3DUnet.
- 4. Better benchmarks in supervised pre-training: Known vs. Novel setting.
- 5. More detailed comparisons between Supervised vs. SSL for few-shot transfer and domain generalization.

References

- Rebuffi et al. Learning Multiple Visual Domains with Residual Adapters. NeurlPS'17.
- Chen et al. Med3D: Transfer Learning for 3D Medical Image Analysis. ArXiv'19
- Cai et al. TinyTL: Reduce Memory, Not Parameters for Efficient On-Device Learning. NeurIPS'20.
- Frankle et al. Training BatchNorm and Only BatchNorm: On the Expressive Power of Random Features in CNNs. ICLR'21.
- Zhou et al. Model Genesis. MedlA'21.
- Ben-Zaken et al. BitFit: Simple Parameter-Efficient Fine-Tuning for Transformer-based Masked Language Models. ACL'22.
- Hu et al. LoRA: Low-Rank Adaptation of Large Language Models. ICLR'22.
- Chen et al. AdaptFormer Adapting Vision Transformers for Scalable Visual Recognition. NeurlPS'22.
- Tang et al. Self-Supervised Pre-Training of Swin Transformers for 3D Medical Image Analysis. CVPR'22.
- Xie et al. UniMiSS: Universal Medical Self-Supervised Learning via Breaking Dimensionality Barrier. ECCV'22.
- Liu et al. CLIP-Driven Universal Model for Organ Segmentation and Tumor Detection. ICCV'23.
- Ulrich et al. MultiTalent: A Multi-Dataset Approach to Medical Image Segmentation. MICCAl'23.
- Ye et al. UniSeg: A Prompt-driven Universal Segmentation Model as well as A Strong Representation Learner. MICCAl'23.
- Silva-Rodríguez et al. Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation. MedIA'25.
- Butoi et al. Universeg: Universal medical image segmentation. ICCV'23.
- Kirillov et al. Segment Anything. ICCV'23.
- Gao et al. Training Like a Medical Resident: Context-Prior Learning Toward Universal Medical Image Segmentation. CVPR'24.
- Li et al. How Well Do Supervised 3D Models Transfer to Medical Imaging Tasks?. ICLR'24.
- Liu et *al.* Universal and Extensible Language-Vision Models for Organ Segmentation and Tumor Detection from Abdominal CT. MedIA'24.

- Wang et al. SAM-Med3D: Towards General-Purpose Segmentation Models for Volumetric Medical Images. ECCVw'24.
- Gong et al. 3DSAM-adapter: Holistic Adaptation of SAM from 2D to 3D for Promptable Medical Image Segmentation. MedIA'24.
- Chen et al. MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image Segmentation. MedIA'24.
- Ma et al. Segment Anything in Medical Images. Nat.Com.'24.
- Kulkarni et al. Anytime, Anywhere, Anyone: Investigating the Feasibility of SAM for Crowd-Sourcing Medical Image Annotations. MIDL'24.
- Huang et al. On The Challenges And Perspectives of Foundation Models For Medical Image Analysis. MedIA'24.
- Li et al. AdbomenAtlas: A Large Scale Detailed Annotated and Multi Center Dataset for Efficient Transfer Learning and Open Algorithmic Benchmarking, MedIA'24.
- Rakic et al. Tyche: Stochastic In-Context Learning for Medical Image Segmentation. CVPR'24.
- Basu et al. Strong Baselines for Parameter-Efficient Few-Shot Fine-Tuning. AAAI'24.
- Undandarao et al. No Zero-Shot without Exponential Data: Pretraining Concept frequency Determines Multimodal Model Performance. ICLRW-FM'24.
- Hamamci et al. Developing Generalist Foundation Models from a Multimodal Dataset for 3D Computed Tomography. ArXiv'24.
- Silva-Rodríguez et al. A Foundation Language-Image Model of the Retina: Encoding Expert Knowledge in Text Supervision. MedIA'25.
- Wald et al. Revisiting MAE pre-training for 3D medical image segmentation. CVPR'25.
- Gao et al. Show and Segment: Universal Medical Image Segmentation via In-Context Learning. CVPR'25
- Mai et al. Lessons and Insights from a Unifying Study of Parameter-Efficient Fine-Tuning (PEFT) in Visual Recognition. CVPR'25
- Baklouti et al. Regularized Low-Rank Adaptation for Few-Shot Organ Segmentation. MICCAl'25