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● M1. Introduction to Foundation Models -- 8 to 9:30 AM (Tanveer)
○ Evolution of Machine learning models

○ Definition of Foundation models

○ What makes a model foundational?

○ Foundational models in medical imaging

○ Self-supervised learning, contrastive learning, masked auto-encoders

○ LLMs- transformers

● M2. Vision-Language Models (VLMs) – 9:30 to 10:00 AM (Ismail)
○ Contrastive Language-Image Pre-training (CLIP)

○ Zero-shot and few-shot inference

○ Vision-language models for medical imaging (e.g., embedding domain knowledge)

● Coffee break: 10 to 10:30 AM

Outline (Morning session)



● M3. Fine-tuning large Vision-Language Models - 10:30 to 11:10 AM (Ismail)
○ Prompt learning

○ Adapters

○ Linear-probing baselines

○ Parameter-efficient fine-tuning (e.g., low-rank approximation)

○ Transduction helps VLMs.

● M4. Foundational models for segmentation -- 11:10 to 11:50 AM (Julio)
○ Types of foundation models: a data perspective.

○ Learning/usages-based classification.

○ Zero-shot/adaptation-oriented volumetric foundation models.

● M5. Techniques for Improving LLM performance --11:50-12:10 PM (Tanveer)
○ Instruction tuning

○ Retrieval-augmented generation

○ Fact-checking

● M6. Deployment considerations of generative AI -- 12:-10 PM -12:30 PM (Tanveer)
○ Datasets for training foundational models

○ Evaluation of foundational models

Outline (Morning session)



Part 4
Foundational models for segmentation
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M4. Foundational models for segmentation
○ Types of foundation models: a data perspective.

○ Learning/usages-based classification.

○ Zero-shot/adaptation-oriented volumetric foundation models.

Outline



Foundation models for medical image segmentation

6



7

Foundation models for medical image segmentation
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Foundation models for medical image segmentation

Trained with many
data / tasks / domains



9

Foundation models for medical image segmentation

Trained with many
data / tasks / domains

Transfer to new
domains/tasks

+ Some target 
domain feedback

(ideally small)
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Foundation models for medical image segmentation

Trained with many
data / tasks / domains

+ Some target 
domain feedback

(ideally small)

[2023-2024-2025]

SuPreM

UniSeg
UniverSeg

CLIP-Driven

SAM

MedSAM

MedSAM-3D

MA-SAM

MultiTalent

Hermes

Iris

Spark3D

CT-CLIP

MRI-Core

Transfer to new
domains/tasks
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Foundation models for medical image segmentation

Trained with many
data / tasks / domains

+ Some target 
domain feedback

(ideally small)

Organizing the mess!

1. Types of foundation models: a data perspective.

A. Generalist vs. Specialized

B. 2D vs. 3D

C. Multimodal vs. Unimodal

2. Learning/Usage Objectives

A. Zero-shot / Transfer Learning

B. In-Context Learning

C. Interactive Models (“SAM”)

3. Zero-shot / Adaptation-oriented (3D data)

A. How to pre-train?

B. How useful are foundation models? Limitations

on the adaptation stage

C. Few-shot Parameter-Efficient Fine-tuning
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Foundation models for medical image segmentation

Trained with many
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+ Some target 
domain feedback

(ideally small)
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Types of foundation models: a data perspective.

Generalist vs. Specialized (pre-training)

Huang et al. On The Challenges And Perspectives of Foundation Models

For Medical Image Analysis. MedIA’24.

+ Data Available - Data Available
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Types of foundation models: a data perspective.

Huang et al. On The Challenges And Perspectives of Foundation Models

For Medical Image Analysis. MedIA’24.

→ Medical better than General (natural image) 

Ma et al. Segment Anything in Medical Images. 

Nat.Com.’24

Generalist vs. Specialized (pre-training)
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Types of foundation models: a data perspective.

Huang et al. On The Challenges And Perspectives of Foundation Models

For Medical Image Analysis. MedIA’24.

→ Modality better than Medical ?
(scarce empirical studies for segmentation)

Generalist vs. Specialized (pre-training)
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Types of foundation models: a data perspective.

Generalist vs. Specialized (pre-

training)

Huang et al. On The Challenges And Perspectives of Foundation Models

For Medical Image Analysis. MedIA’24.

→ Modality better than Medical ?
(scarce empirical studies for segmentation)
BUT… On VLMs for classification it is the case.

Silva-Rodríguez et al. A Foundation Language-Image

Model of the Retina: Encoding Expert Knowledge in Text

Supervision. MedIA’25.
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Types of foundation models: a data perspective.

Generalist vs. Specialized (pre-

training)

Huang et al. On The Challenges And Perspectives of Foundation Models

For Medical Image Analysis. MedIA’24.

→ Modality better than Medical ?
(scarce empirical studies for segmentation)
BUT… Large domain GAP between modalities.

Butoi et al. Universeg: Universal medical image segmentation. ICCV’23.

Ma et al. Segment Anything in Medical Images. Nat.Com.’24
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Types of foundation models: a data perspective.

2D vs. 3D (pre-training)

2D Images*
256 x 256 pixels
512 x 512 pixels

3D Volumes
256 x 256 x 500 pixels
512 x 512 x 500 pixels
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Types of foundation models: a data perspective.

2D vs. 3D (pre-training)

→ Pre-training on 3D better than on 2D
(also, a limitation of natural image pre-training)

Wang et al. SAM-Med3D: Towards General-Purpose

Segmentation Models for Volumetric Medical Images.

ECCVw’24.

2D Images*
256 x 256 pixels
512 x 512 pixels

3D Volumes
256 x 256 x 500 pixels
512 x 512 x 500 pixels
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Types of foundation models: a data perspective.

Multimodal vs. Unimodal

Heart size is enlarged…

Clear consolidation at …

No abnormality seen…

Image-Level image-language pre-training Segmentation image-language pre-training

“A liver is in the image”
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Types of foundation models: a data perspective.

Multimodal vs. Unimodal

→ Why segmentation FMs in medical are mostly Unimodal?

- Scarcity of grounding language annotations with masks.
- Already-existing large datasets with pixel/voxel annotations only.
- Unclear contribution of text modality in absence of open-

vocabulary concepts.
- Some works include a CLIP-driven component, but its contribution

is doubtful.
- To explore in lesion segmentation?

“A liver is in the image”

Liu et al. CLIP-Driven Universal Model for Organ

Segmentation and Tumor Detection. ICCV’23.

Hamamci et al. Developing Generalist

Foundation Models from a Multimodal Dataset

for 3D Computed Tomography. ArXiv’24.
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Foundation models for medical image segmentation

Trained with many
data / tasks / domains

+ Some target 
domain feedback

(ideally small)

Organizing the mess!

1. Types of foundation models: a data perspective.

A. Generalist vs. Specialized

B. 2D vs. 3D

C. Multimodal vs. Unimodal

2. Learning/Usage Objectives

A. Zero-shot / Transfer Learning

B. In-Context Learning

C. Interactive Models (“SAM”)

3. Zero-shot / Adaptation-oriented (3D data)

A. How to pre-train?

B. How useful are foundation models? Limitations on

the adaptation stage

C. Few-shot Parameter-Efficient Fine-Tuning
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Learning / usage objectives.

Zero-shot / Transfer Learning CLIP-Driven

MultiTalent

UniSeg

SuPreM

ImageNet Philosophy

Med3D(’19)

Chen et al. Med3D: Transfer Learning for 3D Medical Image Analysis. ArXiv’19.

Ulrich et al. MultiTalent: A Multi-Dataset Approach to Medical

Image Segmentation. MICCAI’23.

HERMES

FSEFT
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Learning / usage objectives.

Zero-shot / Transfer Learning CLIP-Driven

MultiTalent

UniSeg

SuPreM

Med3D(’19)

Zero-shot predictions
to base tasks

Fine-tuning to novel 
domains/tasks

HERMES

FSEFT

ImageNet Philosophy

Chen et al. Med3D: Transfer Learning for 3D Medical Image Analysis. ArXiv’19.

Ulrich et al. MultiTalent: A Multi-Dataset Approach to Medical

Image Segmentation. MICCAI’23.
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Learning / usage objectives.

(Zero-shot: VLMs vs. Unimodal)

Zero-shot: not receiving any supervision from the target domain/task

Unimodal

Class 1: cat

Class 2: dog

A photo of

[“CAT”/”DOG”]

Multi-modal

Class prototypes

𝑾𝑭𝒙𝑪 C
la

s
s
 1

C
la

s
s
 2

Is zero-shot predictions to novel categories a
realistic objective?

Undandarao et al. No Zero-Shot without Exponential Data:

Pretraining Concept frequency Determines Multimodal Model

Performance. NeurIPS’24.
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Learning / usage objectives.

In Context Learning

UniverSeg

Tyche

Butoi et al. Universeg: Universal medical image segmentation. ICCV’23.

“At the end of the day, practitioners won’t fine-tune” 
Iris
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Learning / usage objectives.

In Context Learning

UniverSeg

Main Idea

Query 
sample

Support set

Butoi et al. Universeg: Universal medical image segmentation. ICCV’23.
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Learning / usage objectives.

In Context Learning

UniverSeg

Main Idea

Query 
sample

Support set

The representations from the 
query and support samples can 

interact at multiple scales

Butoi et al. Universeg: Universal medical image segmentation. ICCV’23.
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Learning / usage objectives.

In Context Learning

UniverSeg

Concatenate query and 
support activation maps

Support samples 
activation maps

Query output: average across support 

Butoi et al. Universeg: Universal medical image segmentation. ICCV’23.
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How is this trained? (Hint: based on meta-learning or learning-to-learn)

Learning / usage objectives.

In Context Learning

UniverSeg

Butoi et al. Universeg: Universal medical image segmentation. ICCV’23.
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How is this trained? (Hint: based on meta-learning or learning-to-learn)

Learning / usage objectives.

In Context Learning

UniverSeg

Butoi et al. Universeg: Universal medical image segmentation. ICCV’23.
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How is this trained? (Hint: based on meta-learning or learning-to-learn)

Learning / usage objectives.

In Context Learning

UniverSeg

Among all training tasks

Butoi et al. Universeg: Universal medical image segmentation. ICCV’23.



33

How is this trained? (Hint: based on meta-learning or learning-to-learn)

Learning / usage objectives.

In Context Learning

UniverSeg

Among all training samples 
from that task

Butoi et al. Universeg: Universal medical image segmentation. ICCV’23.
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How is this trained? (Hint: based on meta-learning or learning-to-learn)

Learning / usage objectives.

In Context Learning

UniverSeg

Among all training samples 
from that task

Butoi et al. Universeg: Universal medical image segmentation. ICCV’23.



35

How is this trained? (Hint: based on meta-learning or learning-to-learn)

Learning / usage objectives.

In Context Learning

UniverSeg

Images Augmentations

Butoi et al. Universeg: Universal medical image segmentation. ICCV’23.
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How is this trained? (Hint: based on meta-learning or learning-to-learn)

Learning / usage objectives.

In Context Learning

UniverSeg

Standard (training) forward-
backward steps

Butoi et al. Universeg: Universal medical image segmentation. ICCV’23.
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And what about inference? 

Learning / usage objectives.

In Context Learning

UniverSeg

To make it more robust, multiple 
support sets are employed

For a given image xt

Butoi et al. Universeg: Universal medical image segmentation. ICCV’23.
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Learning / usage objectives.

In Context Learning

UniverSeg

✓ Can tackle new tasks.
✓ Does not require fine-tuning.
✓ Promising performance.

× Limited to the binary scenario.
× Performance below dataset-specific models.
× Unclear implementation on large 3D data.
× Requires continuously employing the support set.

Butoi et al. Universeg: Universal medical image segmentation. ICCV’23.
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Learning / usage objectives.

In Context Learning

Tyche

Test-Time 
Augmentations

In-Context Learning
CrossBlocks

Measure Uncertainty

Rakic et al. Tyche: Stochastic In-Context Learning for Medical Image Segmentation. CVPR’24
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Learning / usage objectives.

In Context Learning

Iris

Gao et al. Show and Segment: Universal Medical Image Segmentation via In-Context Learning. CVPR’25

Image encoder disconnected from support 
sample cross-correlation operations
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Learning / usage objectives.

In Context Learning

Iris

Gao et al. Show and Segment: Universal Medical Image Segmentation via In-Context Learning. CVPR’25

Context is introduced trough task 
embedding in the decoder
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Learning / usage objectives.

In Context Learning

Iris

Context is introduced trough task 
embedding in the decoder

✓ Allows multi-class tasks.
✓ Disentangles the support set

processing and inference – more
flexible and efficient scenarios.

Gao et al. Show and Segment: Universal Medical Image Segmentation via In-Context Learning. CVPR’25



43

Learning / usage objectives.

In Context Learning

Iris

Context is introduced trough task 
embedding in the decoder

Gao et al. Show and Segment: Universal Medical Image Segmentation via In-Context Learning. CVPR’25
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Learning / usage objectives.

In Context Learning

Iris

Context is introduced trough task 
embedding in the decoder

Gao et al. Show and Segment: Universal Medical Image Segmentation via In-Context Learning. CVPR’25
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Learning / usage objectives.

In Context Learning

Iris

Context is introduced trough task 
embedding in the decoder

Decoder is a query-based Transformer

Mask2Former. CVPR’22.

Gao et al. Show and Segment: Universal Medical Image Segmentation via In-Context Learning. CVPR’25
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Learning / usage objectives.

Interactive models (“SAM”)

SAM

MedSAM

MA-SAM

3DSAM-Adapter

Med-SAM3D

Trained on huge 
amount of data

Pipeline

Kirillov et al. Segment Anything. ICCV’23.
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Learning / usage objectives.

Interactive models (“SAM”)

SAM

How is this trained? 

Kirillov et al. Segment Anything. ICCV’23.

Computed once per 
image and stored
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Learning / usage objectives.

Interactive models (“SAM”)

SAM

Positional embeddings
+

Learnable Embeddings 
(per type of prompt)

Computed once per 
image and stored

How is this trained? 

Kirillov et al. Segment Anything. ICCV’23.
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Learning / usage objectives.

Interactive models (“SAM”)

SAM

Positional embeddings
+

Learnable Embeddings 
(per type of prompt)

Computed once per 
image and stored

Lightweight Mask Decoder:
Image – prompt cross-attention

+ MLP + upsampling

How is this trained? 

Kirillov et al. Segment Anything. ICCV’23.



Learning / usage objectives.
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Interactive models (“SAM”)

SAM

Remember: prompts on test data

And what about inference? 

Kirillov et al. Segment Anything. ICCV’23.



Fine-tuning SAM on 
huge amount of 

medical data

Pipeline

51
Ma et al. Segment Anything in Medical Images. Nat.Com.’24.

Learning / usage objectives.

Interactive models (“SAM”)

MedSAM



Trained on huge 
amount of data

Pipeline
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Learning / usage objectives.

Interactive models (“SAM”)

MedSAM

Limited to Bounding Box 
and point prompts

How good is the DSC of 
this bounding box?

Ma et al. Segment Anything in Medical Images. Nat.Com.’24.



Fine-tuning SAM via 
Parameter-Efficient 

Fine-Tuning

53

Gong et al. 3DSAM-adapter: Holistic Adaptation of SAM from 2D to 3D for

Promptable Medical Image Segmentation. MedIA’24.

Learning / usage objectives.

Interactive models (“SAM”)

3DSAM-Adapter



Fine-tuning SAM 2D 
via Parameter-Efficient 

Fine-Tuning to 3D

54Chen et al. MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image Segmentation. MedIA’24.

Learning / usage objectives.

Interactive models (“SAM”)

MA-SAM (3D)

3D Adapter

→ Adapt for promptable version.



Fine-tuning SAM 2D 
via Parameter-Efficient 

Fine-Tuning to 3D

55Chen et al. MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image Segmentation. MedIA’24.

Learning / usage objectives.

Interactive models (“SAM”)

MA-SAM (3D)

→ Fine-tuning SAM.

+0.9%



56

Learning / usage objectives.

Interactive models (“SAM”)

Med-SAM3D

Wang et al. SAM-Med3D: Towards General-Purpose Segmentation Models for Volumetric Medical Images. ECCVw’24.

Training a 3D SAM 
with Medical data 

from Scratch



57

Learning / usage objectives.

Interactive models (“SAM”)

Med-SAM3D

Training a 3D SAM 
with Medical data 

from Scratch

1 point for each N slices

Improved over 2D version

Wang et al. SAM-Med3D: Towards General-Purpose Segmentation Models for Volumetric Medical Images. ECCVw’24.



SAM is promptable
(i.e., requires user interaction 

per EACH test image)

SAM only handles 
binary segmentation 
(one class at a time)
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Learning / usage objectives.

Interactive models (“SAM”)

Med-SAM3D

Wang et al. SAM-Med3D: Towards General-Purpose Segmentation Models for Volumetric Medical Images. ECCVw’24.



SAM is promptable
(i.e., requires user interaction 

per EACH test image)

SAM only handles 
binary segmentation 
(one class at a time)

SAM yields sometimes 
lower results to task-

specific models

59

Learning / usage objectives.

Interactive models (“SAM”)

Med-SAM3D

Wang et al. SAM-Med3D: Towards General-Purpose Segmentation Models for Volumetric Medical Images. ECCVw’24.



SAM is promptable
(i.e., requires user interaction 

per EACH test image)

SAM only handles 
binary segmentation 
(one class at a time)
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Learning / usage objectives.

Interactive models (“SAM”)

Med-SAM3D

SAM yields sometimes 
lower results to task-

specific models

Wang et al. SAM-Med3D: Towards General-Purpose Segmentation Models for Volumetric Medical Images. ECCVw’24.
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Learning / usage objectives.

Interactive models (“SAM”)

Med-SAM3D

Other 
Details

Pre-computed ROI in whole-body scans

Iterative random points over the error region
(explicit access to GT)

Wang et al. SAM-Med3D: Towards General-Purpose Segmentation Models for Volumetric Medical Images. ECCVw’24.
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Learning / usage objectives.

Interactive models (“SAM”)

Kulkarni et al. Anytime, Anywhere, Anyone: Investigating the Feasibility of SAM for Crowd-

Sourcing Medical Image Annotations. MIDL’24.

Applications in Active 
Learning / Annotations 
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Foundation models for medical image segmentation

Trained with many
data / tasks / domains

+ Some target 
domain feedback

(ideally small)

Organizing the mess!

1. Types of foundation models: a data perspective.

A. Generalist vs. Specialized

B. 2D vs. 3D

C. Multimodal vs. Unimodal

2. Learning/Usage Objectives

A. Zero-shot / Transfer Learning

B. In-Context Learning

C. Interactive Models (“SAM”)

3. Zero-shot / Adaptation-oriented (3D data)

A. How to pre-train?

B. How useful are foundation models? Limitations

on the adaptation stage

C. Few-shot Parameter-Efficient Fine-tuning
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Learning / usage objectives.

Zero-shot / Transfer Learning CLIP-Driven

MultiTalent

UniSeg

SuPreM

Med3D(’19)

Zero-shot predictions
to base tasks

Fine-tuning to novel 
domains/tasks

HERMES

FSEFT

ImageNet Philosophy

Chen et al. Med3D: Transfer Learning for 3D Medical Image Analysis. ArXiv’19.

Ulrich et al. MultiTalent: A Multi-Dataset Approach to Medical

Image Segmentation. MICCAI’23.
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Zero-shot /Adaptation Oriented (3D Data)

Why volumetric (and mostly CT)? CLIP-Driven

MultiTalent

UniSeg

SuPreM

Med3D(’19)

Ulrich et al. MultiTalent: A Multi-Dataset Approach to Medical

Image Segmentation. MICCAI’23.

Liu et al. CLIP-Driven Universal Model for Organ Segmentation

and Tumor Detection. ICCV’23.
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Zero-shot /Adaptation Oriented (3D Data)

Why volumetric (and mostly CT)? CLIP-Driven

MultiTalent

UniSeg

SuPreM

Med3D(’19)

Ulrich et al. MultiTalent: A Multi-Dataset Approach to Medical

Image Segmentation. MICCAI’23.

Liu et al. CLIP-Driven Universal Model for Organ Segmentation

and Tumor Detection. ICCV’23.

→ A good number of annotated scans publicly available.
(current models are pre-trained with 2K CTs)
→ Anatomical morphology is natural 3D.
→ Labeling at voxel level is tremendously costly for
practitioners (10 min per structure).
→ Enormous potential of FMs to address inter-center,
inter-scan and demographics variabilities.
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Zero-shot /Adaptation Oriented (3D Data)

Challenges of Dataset Assembling CLIP-Driven

MultiTalent

UniSeg

SuPreM

Med3D(’19)

Partially-labeled datasets

Liu et al. CLIP-Driven Universal Model for Organ Segmentation and Tumor Detection. ICCV’23.

Inconsistent annotation protocols



68

Zero-shot /Adaptation Oriented (3D Data)

How to pre-train? Masked CE FSEFT

MultiTalent

Silva-Rodríguez et al. Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation. MedIA’25.

Assembly Dataset with 
Partial Labels
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Zero-shot /Adaptation Oriented (3D Data)

How to pre-train? Masked CE FSEFT

MultiTalent

Assembly Dataset with 
Partial Labels

𝑤𝑐 = [0, 1, 1, 0, 0, 0, 1, 0, 0]

Total Number of 
Categories

Silva-Rodríguez et al. Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation. MedIA’25.



𝑤𝑐 = [0, 1, 1, 0, 0, 0, 1, 0, 0]
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Zero-shot /Adaptation Oriented (3D Data)

How to pre-train? Masked CE FSEFT

MultiTalent

Assembly Dataset with 
Partial Labels

Annotated on its dataset

Silva-Rodríguez et al. Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation. MedIA’25.
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Zero-shot /Adaptation Oriented (3D Data)

How to pre-train? Masked CE FSEFT

MultiTalent

Assembly Dataset with 
Partial Labels

𝑤𝑐 = [0, 1, 1, 0, 0, 0, 1, 0, 0]

NOT annotated on its 
dataset

Silva-Rodríguez et al. Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation. MedIA’25.
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Zero-shot /Adaptation Oriented (3D Data)

How to pre-train? Masked CE FSEFT

MultiTalent

Assembly Dataset with 
Partial Labels

1. Forward Encoder-Decoder

Silva-Rodríguez et al. Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation. MedIA’25.
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Zero-shot /Adaptation Oriented (3D Data)

How to pre-train? Masked CE FSEFT

MultiTalent

Assembly Dataset with 
Partial Labels

1. Forward Encoder-Decoder

2. Forward Classifier + Sigmoid activation

Disentangle prediction
for each task 

(softmax might affect not-
annotated categories)

Silva-Rodríguez et al. Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation. MedIA’25.
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Zero-shot /Adaptation Oriented (3D Data)

How to pre-train? Masked CE FSEFT

MultiTalent

Assembly Dataset with 
Partial Labels

1. Forward Encoder-Decoder

2. Forward Classifier + Sigmoid activation

3. Compute any masked segmentation loss, and update

Silva-Rodríguez et al. Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation. MedIA’25.
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Zero-shot /Adaptation Oriented (3D Data)

How to pre-train? Masked CE FSEFT

MultiTalent

Ulrich et al. MultiTalent: A Multi-Dataset Approach to Medical Image Segmentation. MICCAI’23.

Assembly Dataset with 
Partial Labels

1. Forward Encoder-Decoder

2. Forward Classifier + Sigmoid activation

3. Compute any masked segmentation loss, and update
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Zero-shot /Adaptation Oriented (3D Data)

How to pre-train? Masked CE SuPreM

CLIP-Driven

Main idea

Liu et al. CLIP-Driven Universal Model for Organ Segmentation and Tumor Detection. ICCV’23.
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Zero-shot /Adaptation Oriented (3D Data)

How to pre-train? CLIP-Driven SuPreM

CLIP-Driven

Main idea

c

Classifier conditioned to text and 
bottleneck features

Frozen CLIP

Liu et al. CLIP-Driven Universal Model for Organ Segmentation and Tumor Detection. ICCV’23.
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Zero-shot /Adaptation Oriented (3D Data)

How to pre-train? CLIP-Driven SuPreM

CLIP-Driven

Liu et al. CLIP-Driven Universal Model for Organ Segmentation and Tumor Detection. ICCV’23.



Text branch 
(generates text embedding for class k)
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Zero-shot /Adaptation Oriented (3D Data)

How to pre-train? CLIP-Driven SuPreM

CLIP-Driven

Liu et al. CLIP-Driven Universal Model for Organ Segmentation and Tumor Detection. ICCV’23.



Text branch 
(generates text embedding for class k)

Visual branch-encoder 
(generates visual embedding for volume x)
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Zero-shot /Adaptation Oriented (3D Data)

How to pre-train? CLIP-Driven SuPreM

CLIP-Driven

Liu et al. CLIP-Driven Universal Model for Organ Segmentation and Tumor Detection. ICCV’23.



Text branch 
(generates text embedding for class k)

Visual branch-encoder 
(generates visual embedding for volume x)

Text-based controller MLP
(generates class parameters)
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Zero-shot /Adaptation Oriented (3D Data)

How to pre-train? CLIP-Driven SuPreM

CLIP-Driven

Liu et al. CLIP-Driven Universal Model for Organ Segmentation and Tumor Detection. ICCV’23.



Text branch 
(generates text embedding for class k)

Visual branch-encoder 
(generates visual embedding for volume x)

Text-based controller MLP
(generates class parameters)

Visual branch-decoder 
(generates visual embedding for image x)
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Zero-shot /Adaptation Oriented (3D Data)

How to pre-train? CLIP-Driven SuPreM

CLIP-Driven

Liu et al. CLIP-Driven Universal Model for Organ Segmentation and Tumor Detection. ICCV’23.



Text branch 
(generates text embedding for class k)

Visual branch-encoder 
(generates visual embedding for volume x)

Text-based controller MLP
(generates class parameters)

Visual branch-decoder 
(generates visual embedding for image x)

Training loss
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Zero-shot /Adaptation Oriented (3D Data)

How to pre-train? CLIP-Driven SuPreM

CLIP-Driven

Liu et al. CLIP-Driven Universal Model for Organ Segmentation and Tumor Detection. ICCV’23.



Text branch 
(generates text embedding for class k)

Visual branch-encoder 
(generates visual embedding for volume x)

Text-based controller MLP
(generates class parameters)

Visual branch-decoder 
(generates visual embedding for image x)

Training loss
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Zero-shot /Adaptation Oriented (3D Data)

How to pre-train? CLIP-Driven SuPreM

CLIP-Driven

→ How can the text part contribute if using a frozen
generalist model?

Liu et al. CLIP-Driven Universal Model for Organ Segmentation and Tumor Detection. ICCV’23.
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Zero-shot /Adaptation Oriented (3D Data)

How to pre-train? Prompt-Driven 

Main idea

Gao et al. Training Like a Medical Resident: Context-Prior Learning

Toward Universal Medical Image Segmentation. CVPR’24.

Ye et al. UniSeg: A Prompt-driven Universal Segmentation Model as

well as A Strong Representation Learner. MICCAI’23.

- Objective: condition the segmentation to high
level features related to tasks/domains.
- Prompt selection is a learnable operations to
operate during inference.

Hermes

UniSeg
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Zero-shot /Adaptation Oriented (3D Data)

How to pre-train? Prompt-Driven 

Main idea

Gao et al. Training Like a Medical Resident: Context-Prior Learning

Toward Universal Medical Image Segmentation. CVPR’24.

Ye et al. UniSeg: A Prompt-driven Universal Segmentation Model as

well as A Strong Representation Learner. MICCAI’23.

Conditioning on 
decoder path Conditioning on 

classifier

Hermes

UniSeg
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Zero-shot /Adaptation Oriented (3D Data)

How to pre-train? Prompt-Driven Hermes

UniSeg

Gao et al. Training Like a Medical Resident: Context-Prior Learning Toward Universal Medical Image Segmentation. CVPR’24.

Prompt Similarity 
among tasks
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Zero-shot /Adaptation Oriented (3D Data)
How to pretrain? Self-supervised pre-training 

→ Producing quality annotations in volumetric scans is expensive and laborious.

→ Large amounts of unlabeled data are available (e.g., 5000 scans).

→ Different pretext tasks, but well-configured MAE seems to provide current SoTA.

Tang et al. Self-Supervised Pre-Training of Swin

Transformers for 3D Medical Image Analysis.

CVPR’22.

Xie et al. UniMiSS: Universal Medical Self-Supervised

Learning via Breaking Dimensionality Barrier. ECCV’22.

Zhou et al. Model Genesis. MedIA’21.

Wald et al. Revisiting MAE pre-

training for 3D medical image

segmentation. CVPR’25.
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Zero-shot /Adaptation Oriented (3D Data)

Benefits of supervised foundation models?

SuPreM

MultiTalent

Ulrich et al. MultiTalent: A Multi-Dataset Approach to

Medical Image Segmentation. MICCAI’23.

Li et al. How Well Do Supervised 3D Models Transfer to Medical Imaging Tasks?. ICLR’24.

+0.8%

+1.0%

× Transferability via full fine-tuning of the pre-trained model.
× Access to hundreds of labeled volumes for adaptation.
× Does not leverage its knowledge on known categories.
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Zero-shot /Adaptation Oriented (3D Data)

Benefits of supervised foundation models?

SuPreM

MultiTalent

Ulrich et al. MultiTalent: A Multi-Dataset Approach to

Medical Image Segmentation. MICCAI’23.

Li et al. How Well Do Supervised 3D Models Transfer to Medical Imaging Tasks?. ICLR’24.

+0.8%

+1.0%

× Transferability via full fine-tuning of the pre-trained model.
× Access to hundreds of labeled volumes for adaptation.
× Does not leverage its knowledge on known categories.

Annotate 2000 

volumes

Annotate 300 

volumes

pre-train fine-tune

+1-2%
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Zero-shot /Adaptation Oriented (3D Data)
SuPreM

→  SuPreM models are pre-trained on a curated dataset with 25 fully-annotated structures.

✓ Supervised pre-training is orders of magnitude more data-efficient than self-supervision.
✓ This holds even when transferring to unseen structures.

Benefits of supervised foundation models

Li et al. How Well Do Supervised 3D Models Transfer to Medical Imaging Tasks?. ICLR’24.

Li et al. AdbomenAtlas: A Large Scale Detailed Annotated and Multi Center Dataset for Efficient Transfer Learning and Open Algorithmic Benchmarking. MedIA’24.
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Zero-shot /Adaptation Oriented (3D Data)
FSEFT

Few-Shot Efficient Fine-Tuning

Main idea (how to adapt a pre-trained large-scale model efficiently)

Silva-Rodríguez et al. Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation. MedIA’25.
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Zero-shot /Adaptation Oriented (3D Data)
FSEFT

Few-Shot Efficient Fine-Tuning

Main idea (how to adapt a pre-trained large-scale model efficiently)

Presence of few
annotated volumes
for adaptation

Silva-Rodríguez et al. Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation. MedIA’25.
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Zero-shot /Adaptation Oriented (3D Data)
FSEFT

Few-Shot Efficient Fine-Tuning

Main idea (how to adapt a pre-trained large-scale model efficiently)

Being computationally
efficient, allowing for
commodity GPUs

Presence of few
annotated volumes
for adaptation

Silva-Rodríguez et al. Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation. MedIA’25.



Adaptation code and model weights publicly available 

https://github.com/jusiro/fewshot-finetuning

Silva-Rodríguez et al. Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation. MedIA’25.
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Zero-shot /Adaptation Oriented (3D Data)
FSEFT

Few-Shot Efficient Fine-Tuning

Black-box Adapters

Linear Probing Spatial AdapterF (H,W,D,F)

Out

F’ (H,W,D,F)F (H,W,D,F)

conv3D

Silva-Rodríguez et al. Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation. MedIA’25.
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Zero-shot /Adaptation Oriented (3D Data)
FSEFT

Few-Shot Efficient Fine-Tuning

Black-box Adapters

Linear Probing Spatial AdapterF (H,W,D,F)

Out

F’ (H,W,D,F)F (H,W,D,F)

conv3D

Initialization

Silva-Rodríguez et al. Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation. MedIA’25.
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Zero-shot /Adaptation Oriented (3D Data)
FSEFT

Few-Shot Efficient Fine-Tuning

Parameter-Efficient Fine-Tuning (for the Encoder)

Adapter-CNN

LoRA
AdaptFormer

Selective

Silva-Rodríguez et al. Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation. MedIA’25.
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Zero-shot /Adaptation Oriented (3D Data)
FSEFT

Few-Shot Efficient Fine-Tuning

Adapter-CNN

LoRA
AdaptFormer

Selective Additive

Affine-BN/LN
BitFit

(only-bias)

Parameter-Efficient Fine-Tuning (for the Encoder)

Silva-Rodríguez et al. Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation. MedIA’25.
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Zero-shot /Adaptation Oriented (3D Data)
FSEFT

Few-Shot Efficient Fine-Tuning

Adapter-CNN

LoRA
AdaptFormer

Selective Additive

Affine-BN/LN
BitFit

(only-bias)

What to do with the Decoder?
(millions of paramerers)

→ Base categories: frozen.

→ New categories: fine-tuned.

Parameter-Efficient Fine-Tuning (for the Encoder)

Silva-Rodríguez et al. Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation. MedIA’25.
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Zero-shot /Adaptation Oriented (3D Data)
FSEFT

Few-Shot Efficient Fine-Tuning

Transferability to known tasks (domain shift)

Silva-Rodríguez et al. Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation. MedIA’25.
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Zero-shot /Adaptation Oriented (3D Data)
FSEFT

Few-Shot Efficient Fine-Tuning

Transferability to known tasks (domain shift)

Fine-tuning is not always the best but

interestingly is competitive.

Silva-Rodríguez et al. Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation. MedIA’25.
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Zero-shot /Adaptation Oriented (3D Data)
FSEFT

Few-Shot Efficient Fine-Tuning

Transferability to known tasks (domain shift)

Black-box methods are competitive in

the very low-shot regime.

Silva-Rodríguez et al. Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation. MedIA’25.
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Zero-shot /Adaptation Oriented (3D Data)
FSEFT

Few-Shot Efficient Fine-Tuning

Transferability to known tasks (domain shift)

Silva-Rodríguez et al. Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation. MedIA’25.

Extremely efficient
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Zero-shot /Adaptation Oriented (3D Data)
FSEFT

Few-Shot Efficient Fine-Tuning

Transferability to known tasks (domain shift)

Extremely efficient

Silva-Rodríguez et al. Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation. MedIA’25.
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Zero-shot /Adaptation Oriented (3D Data)
FSEFT

Few-Shot Efficient Fine-Tuning

Transferability to known tasks (domain shift)

Black-box methods hold their

performance when directly

applied to SuPreM models

and 3D CNNs.

Silva-Rodríguez et al. Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation. MedIA’25.
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Zero-shot /Adaptation Oriented (3D Data)
FSEFT

Few-Shot Efficient Fine-Tuning

Transferability to novel tasks (new organs)

Black-box methods are

not competitive.

Silva-Rodríguez et al. Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation. MedIA’25.
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Zero-shot /Adaptation Oriented (3D Data)
FSEFT

Few-Shot Efficient Fine-Tuning

Transferability to novel tasks (new organs)

Additive PEFT outperform

Selective methods

Silva-Rodríguez et al. Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation. MedIA’25.
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Zero-shot /Adaptation Oriented (3D Data)
FSEFT

Few-Shot Efficient Fine-Tuning

Transferability to novel tasks (new organs)

Silva-Rodríguez et al. Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation. MedIA’25.

+9.7%

+5.0%
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Zero-shot /Adaptation Oriented (3D Data)
ARENA

Few-Shot Efficient Fine-Tuning

Challenges of PEFT in low-shot regimes

Mai et al. Lessons and Insights from a Unifying Study of Parameter-Efficient Fine-Tuning (PEFT) in Visual Recognition. CVPR’25
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Zero-shot /Adaptation Oriented (3D Data)
ARENA

Few-Shot Efficient Fine-Tuning

Challenges of PEFT in low-shot regimes

Mai et al. Lessons and Insights from a Unifying Study of Parameter-Efficient Fine-Tuning (PEFT) in Visual Recognition. CVPR’25
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Zero-shot /Adaptation Oriented (3D Data)
ARENA

Few-Shot Efficient Fine-Tuning

Challenges of PEFT in low-shot regimes

With careful hyper-parameter

tuning, all PEFT methods

perform similar in average.

Mai et al. Lessons and Insights from a Unifying Study of Parameter-Efficient Fine-Tuning (PEFT) in Visual Recognition. CVPR’25
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Zero-shot /Adaptation Oriented (3D Data)
ARENA

Few-Shot Efficient Fine-Tuning

Challenges of PEFT in low-shot regimes

Baklouti et al. Regularized Low-Rank Adaptation for Few-Shot Organ Segmentation. MICCAI’25

The optimum LoRA rank 

varies per task.



114

Zero-shot /Adaptation Oriented (3D Data)
ARENA

Few-Shot Efficient Fine-Tuning

Adaptive Low-rank adaptation

The number of non-zero elements of the 
vector of diagonal elements determine de rank 

of the decomposition  

Baklouti et al. Regularized Low-Rank Adaptation for Few-Shot Organ Segmentation. MICCAI’25
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Zero-shot /Adaptation Oriented (3D Data)
ARENA

Few-Shot Efficient Fine-Tuning

Adaptive Low-rank adaptation

The number of non-zero elements of the 
vector of diagonal elements determine de rank 

of the decomposition  

l1 encourages vector sparsity

Loss function of the task   

Baklouti et al. Regularized Low-Rank Adaptation for Few-Shot Organ Segmentation. MICCAI’25
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Zero-shot /Adaptation Oriented (3D Data)
ARENA

Few-Shot Efficient Fine-Tuning

Transferability to known tasks (domain shift)

Transferability to novel tasks (new organs)

Baklouti et al. Regularized Low-Rank Adaptation for Few-Shot Organ Segmentation. MICCAI’25



Adaptation code and model weights publicly available 

https://github.com/ghassenbaklouti/ARENA

Baklouti et al. Regularized Low-Rank Adaptation for Few-Shot Organ Segmentation. MICCAI’25
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Zero-shot /Adaptation Oriented (3D Data)

Challenges and future 

1. Model selection in low-shot regimes: we need to facilitate the
adaptation/fine-tuning stage to practitioners.

2. How to know a priori if using black-box Adapters, or PEFT. Which PEFT
method to use?

3. Improving PEFT for convolutional architectures, e.g., nnUnet/3DUnet.

4. Better benchmarks in supervised pre-training: Known vs. Novel setting.

5. More detailed comparisons between Supervised vs. SSL for few-shot
transfer and domain generalization.
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