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Reliability and uncertainty on vision classifiers

Vision classifiers are being 
deployed at high-stake 

applications!
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▪ Model calibration

Plot from [Guo et al., On Calibration of Modern Neural Networks, ICML 2020]
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▪ Model calibration
validation data
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Rejection Criteria

Plot modified from [Geifman et al., Selective Classification for Deep Neural Networks, NIPS 2017]



Reliability and uncertainty on vision classifiers

▪ Limitations, pitfalls.

1. Why to reject samples?

Cat (p=0.53, u=0.8)

REJECT

{Cat (p=0.53),

 Dog (p=0.29)}



Reliability and uncertainty on vision classifiers

▪ Limitations, pitfalls.

https://pytorch.org/vision/stable/models.html

1. Why to reject samples?

Cat (p=0.53, u=0.8)

REJECT

{Cat (p=0.53),

 Dog (p=0.29)}

{fox squirrel}
{marmot, fox squirrel, 

mink, weasel, beaver}

From [Uncertainty Sets for Image Classifiers Using Conformal Prediction, ICLR 2021]



Reliability and uncertainty on vision classifiers

▪ Limitations, pitfalls.

1. Why to reject samples?

2. Lack of guarantees.

Cat (p=0.53, u=0.8)

REJECT

{Cat (p=0.53),

 Dog (p=0.29)}

“Set of predictions that covers the true diagnosis
with a high probability (e.g., 95%)”.

https://pytorch.org/vision/stable/models.html

{fox squirrel}
{marmot, fox squirrel, 

mink, weasel, beaver}

From [Uncertainty Sets for Image Classifiers Using Conformal Prediction, ICLR 2021]
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Conformal prediction (CP) is a machine learning freamework that provides
model agnostic, and distribution-free, finite-sample vailidy guarantees for

handling reliability, by producing predictive sets.

  
▪ Random data points from a data distribution .

▪ Label space .

▪ Set-valued mapping function , such that . 

▪ Desired error level . 

(Brief) Introduction to (split) Conformal Prediction

Coverage property

(marginal over )
For more details, see [Vovk et al., Learning in a Random World, 2005]
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▪ Split conformal prediction (SCP).
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(Brief) Introduction to (split) Conformal Prediction

▪ Split conformal prediction (SCP).

1. Define a non-conformity score. evaluated 
per label

0.53

0.39

0.07

0.01

LAC

0.47

0.61

0.93

0.99

Procedure



(Brief) Introduction to (split) Conformal Prediction

▪ Split conformal prediction (SCP).

1. Define a non-conformity score.

2. Compute the cumulative score distribution from the calibration set for true labels.

evaluated 
per label

0.53

0.39

0.07

0.01

LAC

0.47

0.61

0.93

0.99

0.61

Procedure



(Brief) Introduction to (split) Conformal Prediction

▪ Split conformal prediction (SCP).

1. Define a non-conformity score.

2. Compute the cumulative score distribution from the calibration set for true labels.

3. Search the 1-alpha quantile in such distribution. 

evaluated 
per label

0.53

0.39

0.07

0.01

LAC

0.47

0.61

0.93

0.99

0.61

non-conformity score

(true labels)

Procedure



(Brief) Introduction to (split) Conformal Prediction

▪ Split conformal prediction (SCP).

1. Define a non-conformity score.

2. Compute the cumulative score distribution from the calibration set for true labels.

3. Search the 1-alpha quantile in such distribution. 

4. Produce output sets for new data points. 

evaluated 
per label
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same marginals! 

(Brief) Introduction to (split) Conformal Prediction

▪ Split conformal prediction (SCP).

Remarks

Theoretical guarantees

Generaly, there exist theoretical finite-sample coverage
guarantees under the assumption of i.i.d or, at least, exchangable

data distributions for calibration and testing.

  

For more details, see [Vovk et al., Learning in a Random World, 2005]



(keep the desired error)(we want small sets)

(Brief) Introduction to (split) Conformal Prediction

▪ Split conformal prediction (SCP).

Evaluate

1. Efficiency 3. Adaptability

(set size should adapt to give 

coverage to difficult subgroups)

{fox squirrel}
{marmot, fox squirrel, 

mink, weasel, beaver}

From [Angelopoulos et al, Uncertainty Sets for Image Classifiers Using Conformal Prediction, ICLR 2021]

2. Empirical Coverage



Literature in Vision Classifiers

▪ Explored in the standard supervised scenario.

▪ Different adaptive non-conformity scores have been proposed.

ImageNet

(train)

ImageNet

(val)

ImageNet

(test)

[Angelopoulos et al., Uncertainty Sets for Image Classifiers Using Conformal Prediction, ICLR 2021]

[Romano et al., Classification with valid and adaptive coverage., NeurIPS 2020]

[Sadinle et al., Least ambiguous set-valued classifiers with bounded error levels, Jour. American Statistical Association 2019]



Literature in Vision Classifiers

▪ Explored in the standard supervised scenario.

▪ Different adaptive non-conformity scores have been proposed.

ImageNet

(train)

ImageNet

(val)

ImageNet

(test)

[Angelopoulos et al., Uncertainty Sets for Image Classifiers Using Conformal Prediction, ICLR 2021]

[Romano et al., Classification with valid and adaptive coverage., NeurIPS 2020]

[Sadinle et al., Least ambiguous set-valued classifiers with bounded error levels, Jour. American Statistical Association 2019]

Not yet explored
 for  vision-language (CLIP)

 models
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Conformal Prediction for Zero-Shot Models

▪ Transfer learning setting.

Classical, supervised 
scenario

Foundation models

Different data 
distributions, tasks, etc.



Conformal Prediction for Zero-Shot Models

▪ Transfer learning setting.

Plot 1 from [Udandaro et al., No “Zero-Shot” Without Exponential Data: Pretraining Concept Frequency Determines Multimodal Model Performance, NeurIPS 2024]



Conformal Prediction for Zero-Shot Models

▪ Transfer learning setting.

Plot 1 from [Udandaro et al., No “Zero-Shot” Without Exponential Data: Pretraining Concept Frequency Determines Multimodal Model Performance, NeurIPS 2024]
Plot 2 from [Silva-Rodríguez et al., A Closer Look at the Few-Shot Adaptation of Large Vision-Language Models, CVPR 2024]

Tackled trough few-shot
 Linear Probing



Conformal Prediction for Zero-Shot Models

▪ Can we adapt and conformalize using the same data?



Conformal Prediction for Zero-Shot Models

▪ Can we adapt and conformalize using the same data?

o Training a Linear Probe on the logit space

▪ New class prototypes on the logit projections are defined                               .

▪ These obtain new class scores based on the temperature-scaled Euclidean distance                                         .

▪ Using calibration data, optimize the class prototypes to minimize cross-entropy loss.



Conformal Prediction for Zero-Shot Models

▪ Can we adapt and conformalize using the same data?

o Conformal Prediction performance

Zero-shot Adapt + Conformalize in Calibration



Conformal Prediction for Zero-Shot Models

▪ Can we adapt and conformalize using the same data?

o Conformal Prediction performance

Adapt + Conformalize in Calibration

The exchangeability of the 
Cal/Test scores is broken

Zero-shot
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1. Does not directly rely on Cal labels.

Unsupervised
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Conformal Prediction for Zero-Shot Models

▪ Transfer Learning for Conformal Prediction

1. Does not directly rely on Cal labels.

2. Jointly modifies Cal/Test score distributions.

Unsupervised

Transductive

Transductive

Joint test-time
 prediction 

Inductive

One test sample 
at a time

▪ Similarity matrix.



Conformal Prediction for Zero-Shot Models

▪ Conformal Optimal Transport

Learning goal: find the joint probability matrix (codes) which 
maximize the similarity assignment.

where                        is the assignment matrix, formed by 
individual codes for each sample,        .
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Conformal Prediction for Zero-Shot Models

▪ Conformal Optimal Transport

Learning goal: find the joint probability matrix (codes) which 
maximize the similarity assignment.

where                        is the assignment matrix, formed by 
individual codes for each sample,        .

More concretely,   is restricted to be an element of the 
transportation polytope:

marginals! 



Conformal Prediction for Zero-Shot Models

▪ Conformal Optimal Transport

Optimization: We solve the linear program trough the efficient 
Sinkhorn algorithm, which incorporates an entropic-constraint.

[Cuturi et al., Sinkhorn distances: Lightspeed computation of optimal transport, NeurIPS 2013]
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Norm S as 
initial Q
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▪ Conformal Optimal Transport

Optimization: We solve the linear program trough the efficient 
Sinkhorn algorithm, which incorporates an entropic-constraint.
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Conformal Prediction for Zero-Shot Models

▪ Conformal Optimal Transport

Optimization: We solve the linear program trough the efficient 
Sinkhorn algorithm, which incorporates an entropic-constraint.

Now, the soft codes           are the solution of the optimization 
problem, which can be efficiently optimized by computing 
marginal-renormalization vectors, such that:

[Cuturi et al., Sinkhorn distances: Lightspeed computation of optimal transport, NeurIPS 2013]

Divide columns by 
observed sample 

marginal

Incorporate 
prior sample 

marginal



Conformal Prediction for Zero-Shot Models

▪ Conformal Optimal Transport

Optimization: We solve the linear program trough the efficient 
Sinkhorn algorithm, which incorporates an entropic-constraint.

Now, the soft codes           are the solution of the optimization 
problem, which can be efficiently optimized by computing 
marginal-renormalization vectors, such that:

[Cuturi et al., Sinkhorn distances: Lightspeed computation of optimal transport, NeurIPS 2013]

Apply renorm. vectors 
and sample-wise.



Conformal Prediction for Zero-Shot Models

▪ Conformal Optimal Transport

Conformal prediction: we follow the standard SCP setting using 
codes instead of the original probabilities.



Conformal Prediction for Zero-Shot Models

▪ Enhancing popular non-conformity scores



Conformal Prediction for Zero-Shot Models

▪ Enhancing popular non-conformity scores

15-20% better

Valid coverage!



Conformal Prediction for Zero-Shot Models

▪ Comparison to popular transductive methods

TIM from [Boudiaf et al., Transductive Information Maximization for Few-Shot Learning, NeurIPS 2020]
TransCLIP from [Zanella et al., Boosting Vision-Language Models with Transduction, NeurIPS 2024]



Conformal Prediction for Zero-Shot Models

▪ Comparison to popular transductive methods

TIM from [Boudiaf et al., Transductive Information Maximization for Few-Shot Learning, NeurIPS 2020]
TransCLIP from [Zanella et al., Boosting Vision-Language Models with Transduction, NeurIPS 2024]

training-free

no improvement

Better than SoTA even in the 

discriminative aspect!



Conformal Prediction for Zero-Shot Models

▪ Evaluation of the data-efficiency

Robustness to small 
calibration sets

Robustness to small 
query inputs
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