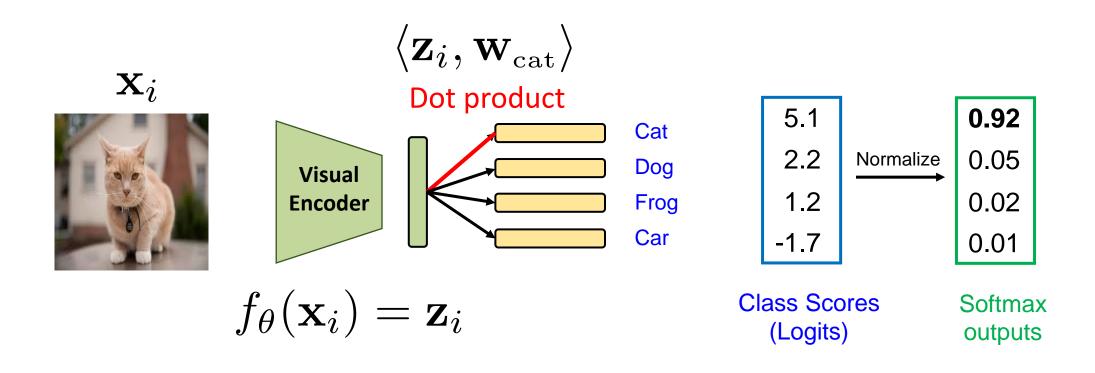


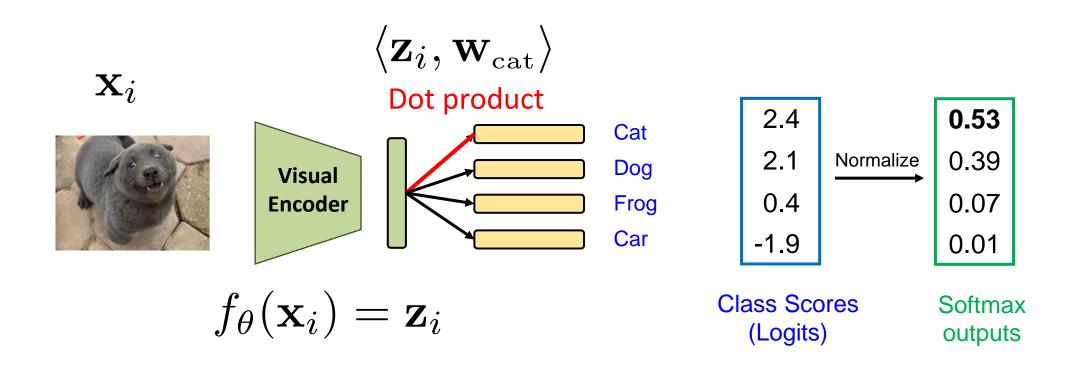
Julio Silva-Rodríguez

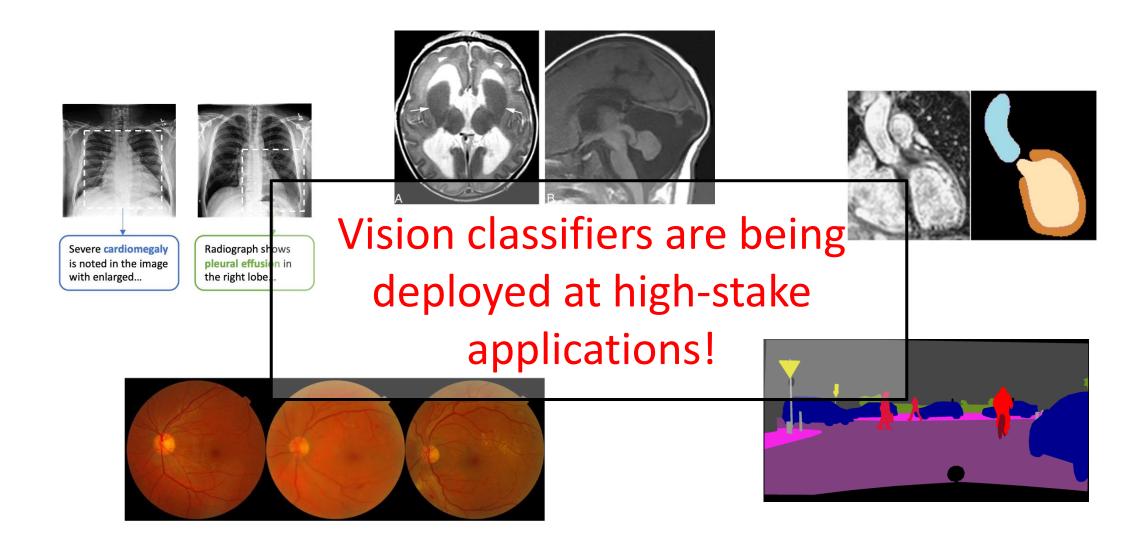
Ismail Ben Ayed

ÉTS Montréal

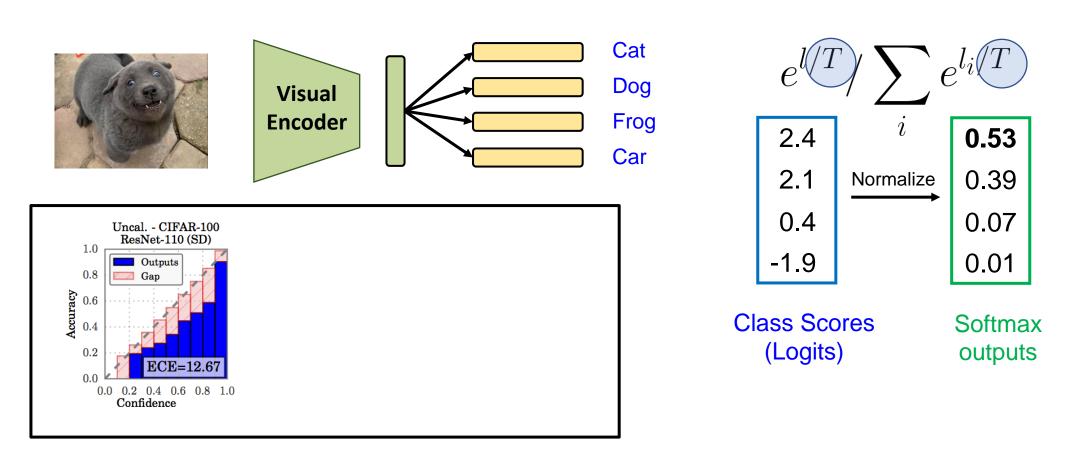
Jose Dolz



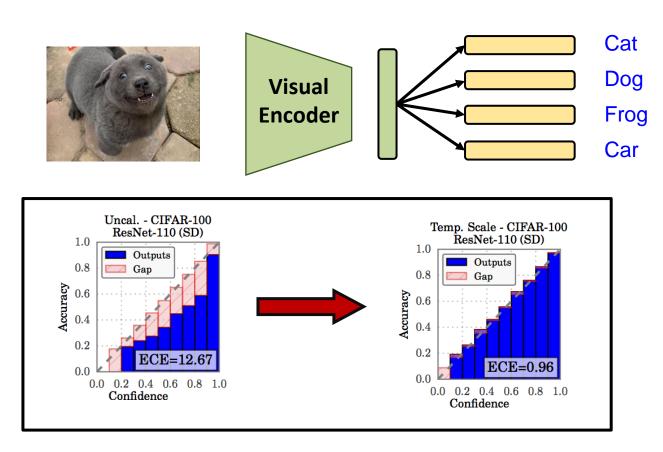


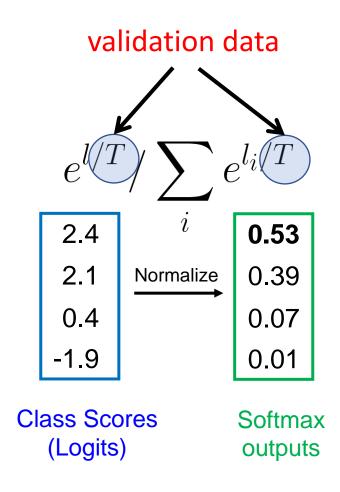


Model calibration

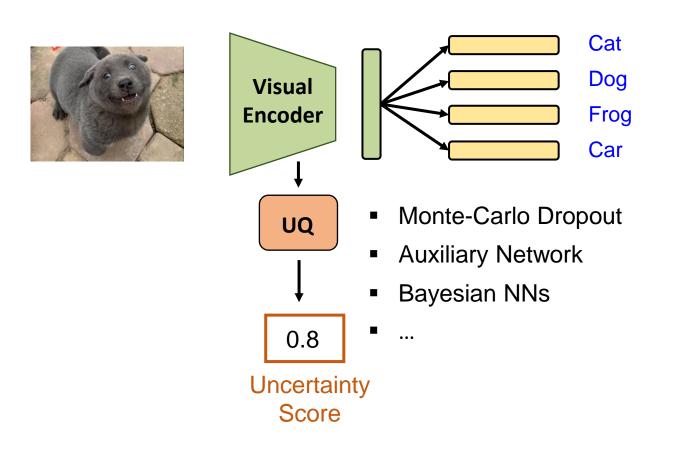


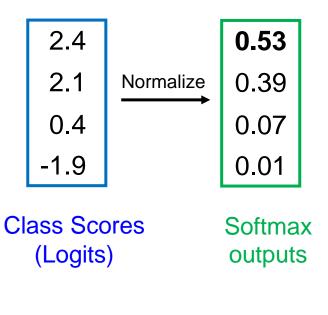
Model calibration



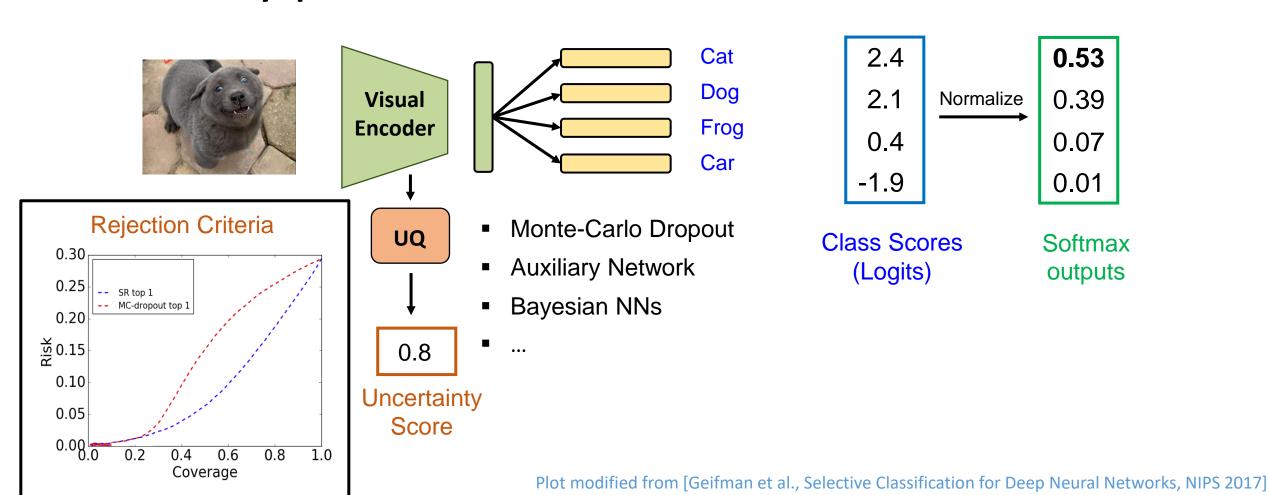


Uncertainty quantification





Uncertainty quantification



Limitations, pitfalls.

1. Why to reject samples?

Cat (p=0.53, u=0.8)
REJECT ×

{Cat (p=0.53), **Dog** (p=0.29)}

Limitations, pitfalls.

1. Why to reject samples?

Cat (p=0.53, u=0.8)

REJECT ×

{Cat (p=0.53), **Dog** (p=0.29)}

Weight	Acc@1	Acc@5
AlexNet_Weights.IMAGENET1K_V1	56.522	79.066
ConvNeXt_Base_Weights.IMAGENET1K_V1	84.062	96.87
ConvNeXt_Large_Weights.IMAGENET1K_V1	84.414	96.976
ConvNeXt_Small_Weights.IMAGENET1K_V1	83.616	96.65
ConvNeXt_Tiny_Weights.IMAGENET1K_V1	82.52	96.146
DenseNet121_Weights.IMAGENET1K_V1	74.434	91.972
DenseNet161_Weights.IMAGENET1K_V1	77.138	93.56
DenseNet169_Weights.IMAGENET1K_V1	75.6	92.806
DenseNet201_Weights.IMAGENET1K_V1	76.896	93.37
EfficientNet_B0_Weights.IMAGENET1K_V1	77.692	93.532
EfficientNet_B1_Weights.IMAGENET1K_V1	78.642	94.186

https://pytorch.org/vision/stable/models.html

{fox squirrel}

{marmot, fox squirrel, mink, weasel, beaver}

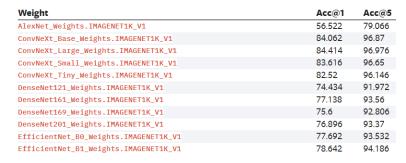
From [Uncertainty Sets for Image Classifiers Using Conformal Prediction, ICLR 2021]

Limitations, pitfalls.

1. Why to reject samples?

Cat (p=0.53, u=0.8) REJECT X

{Cat (p=0.53), **Dog** (p=0.29)}



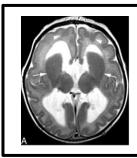
https://pytorch.org/vision/stable/models.html

{fox squirrel}

{marmot, fox squirrel, mink, weasel, beaver}

From [Uncertainty Sets for Image Classifiers Using Conformal Prediction, ICLR 2021]

2. Lack of guarantees.



"Set of predictions that covers the true diagnosis with a high probability (e.g., 95%)".

Conformal prediction (CP) is a machine learning freamework that provides **model agnostic**, and **distribution-fre**e, **finite-sample vailidy guarantees** for handling reliability, by producing **predictive sets**.

Conformal prediction (CP) is a machine learning freamework that provides **model agnostic**, and **distribution-fre**e, **finite-sample vailidy guarantees** for handling reliability, by producing **predictive sets**.

- Random data points (\mathbf{x},y) from a data distribution $\mathcal{P}_{\mathcal{X}\mathcal{Y}}$.
- Label space $\mathcal{Y} = \{1, 2, ..., K\}$.
- Set-valued mapping function $\mathcal{C}:\mathcal{X}\to 2^K$, such that $C(\mathbf{x})\subset\mathcal{Y}$.
- Desired error level $\alpha \in (0,1)$.

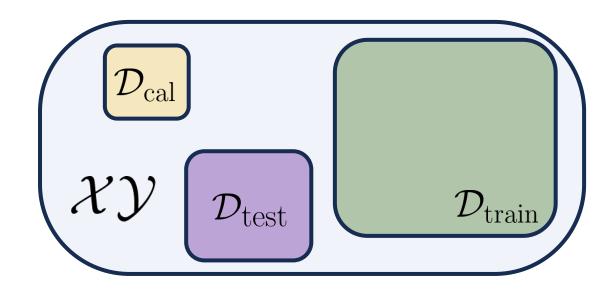
Conformal prediction (CP) is a machine learning freamework that provides **model agnostic**, and **distribution-fre**e, **finite-sample vailidy guarantees** for handling reliability, by producing **predictive sets**.

- Random data points (\mathbf{x},y) from a data distribution $\mathcal{P}_{\mathcal{X}\mathcal{Y}}$.
- Label space $\mathcal{Y} = \{1, 2, ..., K\}$.
- Set-valued mapping function $\mathcal{C}:\mathcal{X}\to 2^K$, such that $C(\mathbf{x})\subset\mathcal{Y}$.
- Desired error level $\alpha \in (0,1)$.

Coverage property

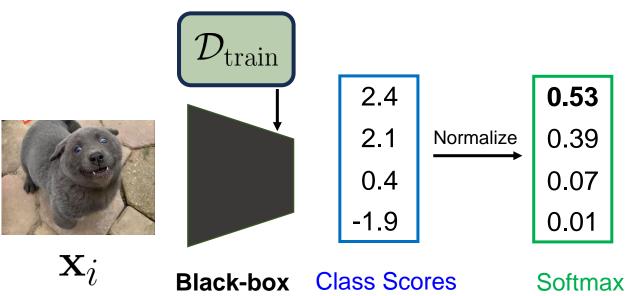
$$\mathcal{P}(Y \in C(\mathbf{x})) \geq 1 - \alpha$$
 (marginal over $\mathcal{P}_{\mathcal{X}\mathcal{Y}}$)

Split conformal prediction (SCP).



outputs

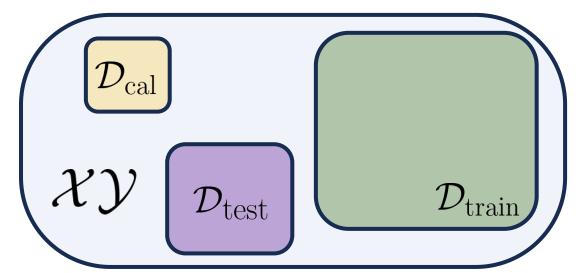
Split conformal prediction (SCP).



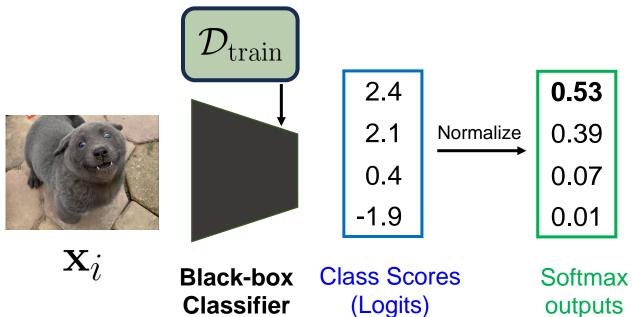
Classifier

 $\mathbf{p}_i = \pi(\mathbf{x}_i)$

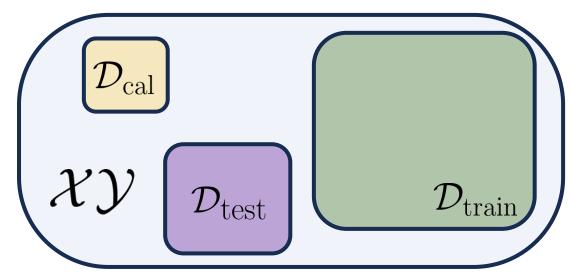
(Logits)



Split conformal prediction (SCP).



 $\mathbf{p}_i = \pi(\mathbf{x}_i)$

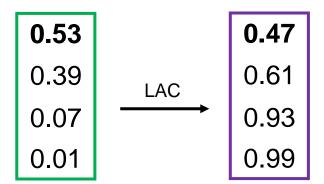


$$\mathcal{D}_{\text{cal}} = \{(\pi(\mathbf{x}_i), y_i)\}_{i=1}^N$$

$$\mathcal{D}_{\text{test}} = \{(\pi(\mathbf{x}_i),)\}_{i=N+1}^{N+M}$$

- Split conformal prediction (SCP).
- 1. Define a non-conformity score.

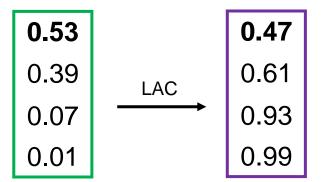
evaluated
$$s_{y} = \mathcal{S}(\mathbf{p}, y)$$
 evaluated



evaluated

- Split conformal prediction (SCP).
- 1. Define a <u>non-conformity score</u>.

$$S_{(y)} = S(\mathbf{p}, y)$$
 per label



2. Compute the cumulative score distribution from the calibration set for true labels.

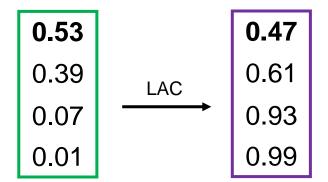
$$s_i = \mathcal{S}(\mathbf{p}_i, y_i)$$

0.61

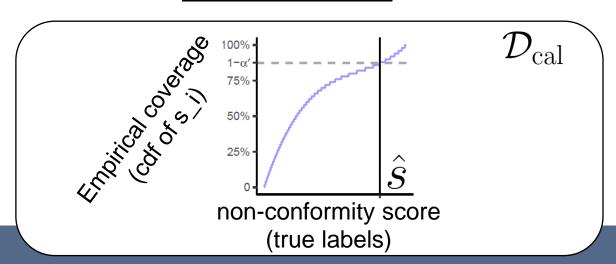
evaluated

- Split conformal prediction (SCP).
- 1. Define a <u>non-conformity score</u>.

$$s_{(y)} = \mathcal{S}(\mathbf{p}, y)$$
 per label



- 2. Compute the cumulative score distribution from the calibration set for true labels.
- 3. Search the 1-alpha quantile in such distribution.



$$s_i = \mathcal{S}(\mathbf{p}_i, y_i)$$

0.61

Procedure

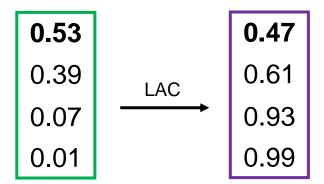
0.61

(Brief) Introduction to (split) Conformal Prediction

evaluated

- Split conformal prediction (SCP).
- 1. Define a non-conformity score.

$$S(y) = S(\mathbf{p}, y)$$
 per label



- 2. Compute the cumulative score distribution from the calibration set for true labels.
- 3. Search the 1-alpha quantile in such distribution.

$$\mathcal{D}_{\mathrm{cal}}$$

$$s_i = \mathcal{S}(\mathbf{p}_i, y_i)$$

4. Produce output sets for new data points.

$$C(\mathbf{x}) = \{ y \in \mathcal{Y} : S(\mathbf{p}, y) \le \hat{s} \}$$

Split conformal prediction (SCP).

Theoretical guarantees

$$\mathcal{P}(Y \in C(\mathbf{x})) \ge 1 - \alpha$$

Generaly, there exist theoretical finite-sample coverage guarantees under the assumption of **i.i.d** or, at least, **exchangable** data distributions for calibration and testing.



Split conformal prediction (SCP).

1. Efficiency

(we want small sets)

$$\operatorname{Size}(\mathcal{D}) = \frac{1}{I} \sum_{i \in \mathcal{D}} |C(\mathbf{x}_i)|$$

2. Empirical Coverage

(keep the desired error)

$$Cov(\mathcal{D}) = \frac{1}{I} \sum_{i \in \mathcal{D}} \delta[(y_i \subset C(\mathbf{x}_i))]$$

3. Adaptability

(set size should adapt to give coverage to difficult subgroups)

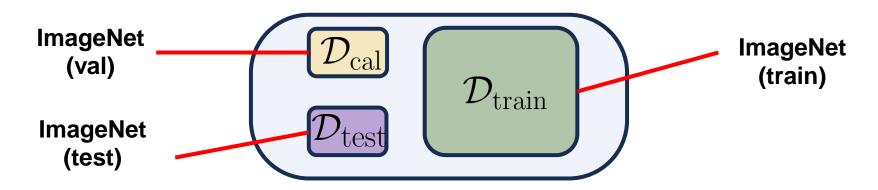
$$\operatorname{Size}(\mathcal{D}) = \frac{1}{I} \sum_{i \in \mathcal{D}} |C(\mathbf{x}_i)| \qquad \operatorname{Cov}(\mathcal{D}) = \frac{1}{I} \sum_{i \in \mathcal{D}} \delta[(y_i \subset C(\mathbf{x}_i))] \qquad \qquad \operatorname{CCV}(\mathcal{D}) = 100 \times \frac{1}{|\mathcal{Y}|} \sum_{k \in \mathcal{V}} \left| \operatorname{Cov}(\mathcal{D}_k) - (1 - \alpha) \right|$$

{fox squirrel}

{marmot, fox squirrel, mink, weasel, beaver}

Literature in Vision Classifiers

Explored in the standard supervised scenario.



Different adaptive non-conformity scores have been proposed.

$$S_{LAC}(\mathbf{x}, y) = 1 - p_{k=y}$$

[Sadinle et al., Least ambiguous set-valued classifiers with bounded error levels, Jour. American Statistical Association 2019]

$$S_{APS}(\mathbf{x}, y) = \rho_x(y) + p_{k=y} \cdot u$$

[Romano et al., Classification with valid and adaptive coverage., NeurIPS 2020]

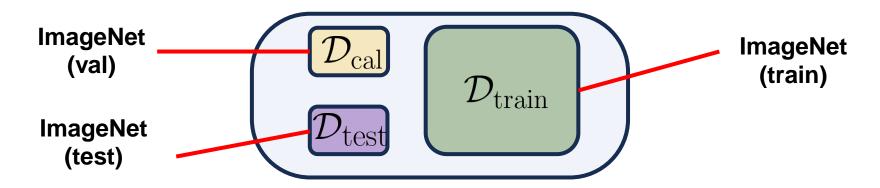
$$S_{\text{RAPS}}(\mathbf{x}, y) = S_{\text{APS}}(\mathbf{x}, y) + \lambda \cdot (o(\mathbf{x}, y) - k_{\text{reg}})^{+}$$

[Angelopoulos et al., Uncertainty Sets for Image Classifiers Using Conformal Prediction, ICLR 2021]

Literature in Vision Classifiers

Not yet explored for vision-language (CLIP) models

Explored in the standard supervised scenario.



Different adaptive non-conformity scores have been proposed.

$$S_{LAC}(\mathbf{x}, y) = 1 - p_{k=y}$$

[Sadinle et al., Least ambiguous set-valued classifiers with bounded error levels, Jour. American Statistical Association 2019]

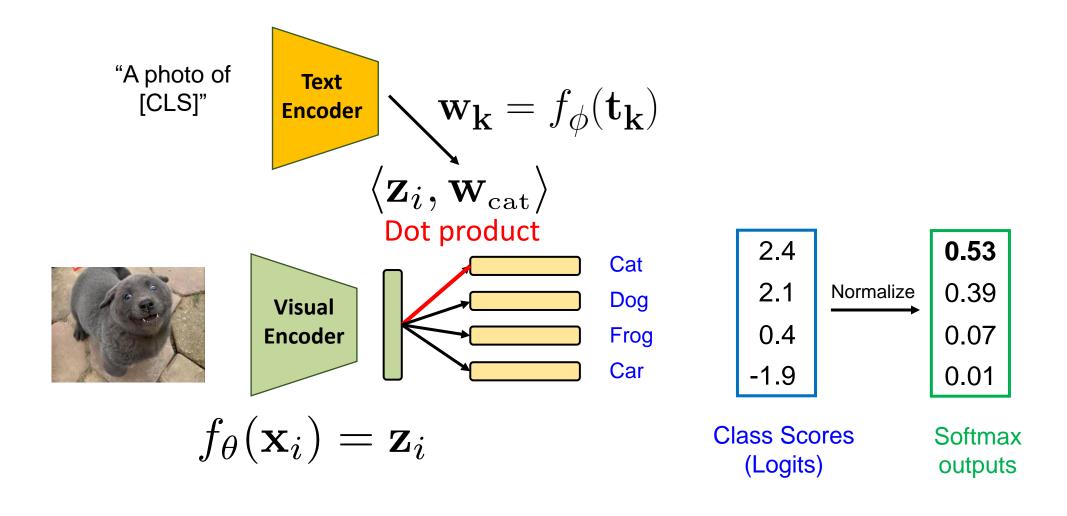
$$S_{APS}(\mathbf{x}, y) = \rho_x(y) + p_{k=y} \cdot u$$

[Romano et al., Classification with valid and adaptive coverage., NeurIPS 2020]

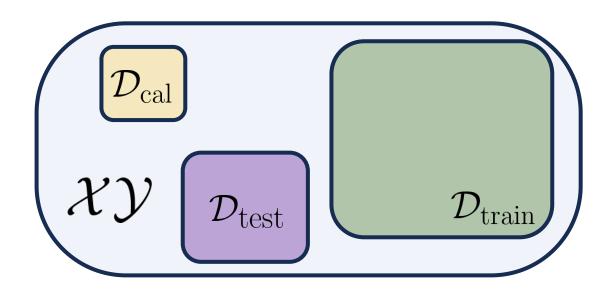
$$S_{\text{RAPS}}(\mathbf{x}, y) = S_{\text{APS}}(\mathbf{x}, y) + \lambda \cdot (o(\mathbf{x}, y) - k_{\text{reg}})^{+}$$

[Angelopoulos et al., Uncertainty Sets for Image Classifiers Using Conformal Prediction, ICLR 2021]

Vision-Language (zero-shot) Models

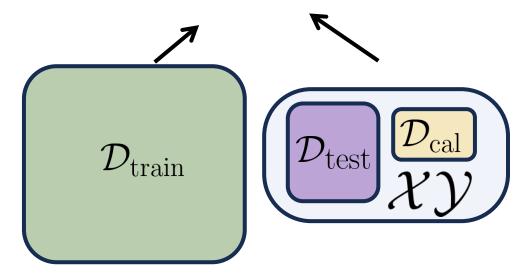


Transfer learning setting.



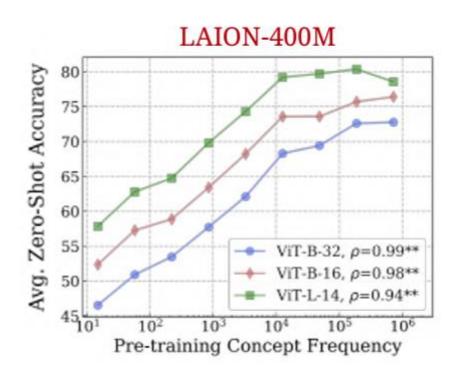
Classical, supervised scenario

Different data distributions, tasks, etc.

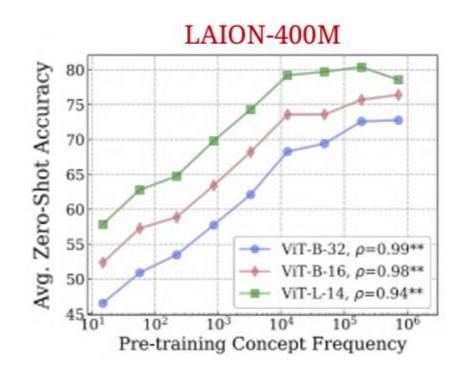


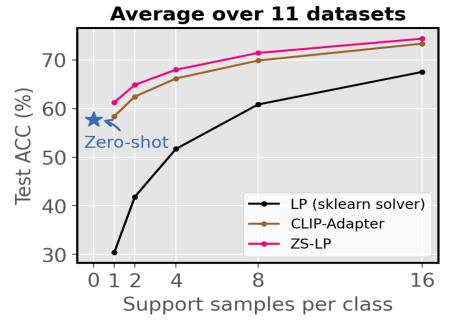
Foundation models

Transfer learning setting.



Transfer learning setting.

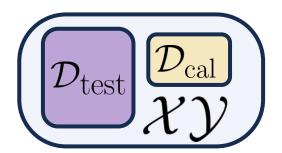




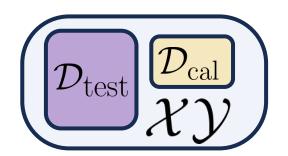
Tackled trough few-shot Linear Probing

Plot 1 from [Udandaro et al., No "Zero-Shot" Without Exponential Data: Pretraining Concept Frequency Determines Multimodal Model Performance, NeurIPS 2024]
Plot 2 from [Silva-Rodríguez et al., A Closer Look at the Few-Shot Adaptation of Large Vision-Language Models, CVPR 2024]

Can we adapt and conformalize using the same data?



Can we adapt and conformalize using the same data?



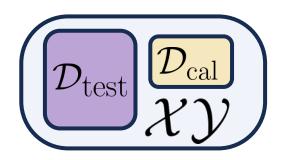
Training a Linear Probe on the logit space

$$\mathcal{D}_{cal} = \{(\mathbf{l}_i, y_i)\}_{i=1}^{N} \quad \mathcal{D}_{test} = \{(\mathbf{l}_i, i)\}_{i=N+1}^{N+M}$$

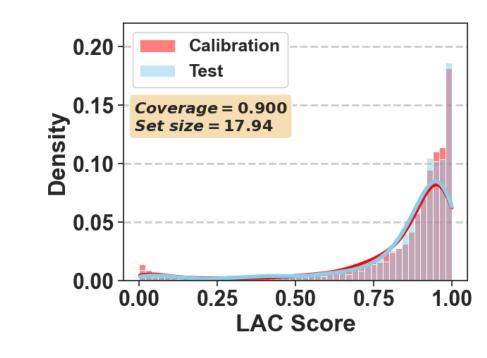
- New class prototypes on the logit projections are defined $\mathbf{W} \in \mathbb{R}^{K imes K}$.
- lacktriangle These obtain new class scores based on the **temperature-scaled Euclidean distance** $l_k' = -rac{ au^{ au}}{2}||\mathbf{l} \mathbf{w}_k||$.
- Using calibration data, optimize the class prototypes to minimize cross-entropy loss.

$$\min_{\mathbf{W}} -\frac{1}{NK} \sum_{i=1}^{I} \sum_{k=1}^{K} y_{ik} \log p_{ik},$$

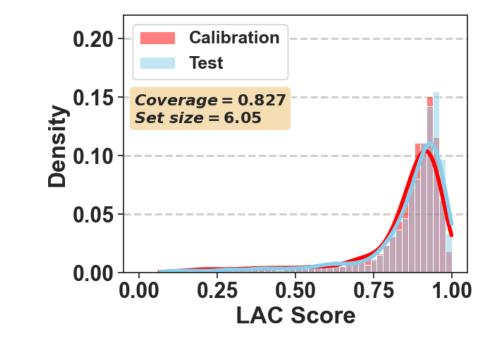
Can we adapt and conformalize using the same data?



Conformal Prediction performance



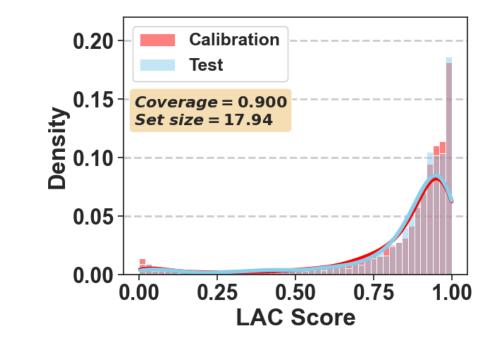
Zero-shot



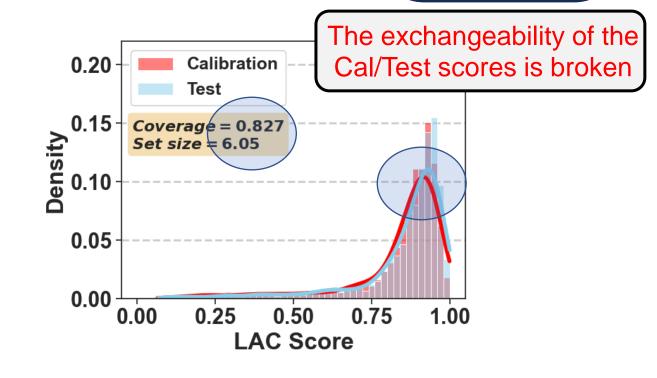
Adapt + Conformalize in Calibration

Can we adapt and conformalize using the same data?

Conformal Prediction performance



Zero-shot



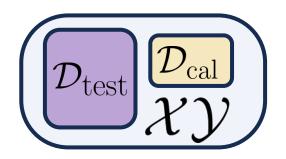
 $D_{
m test}$

Adapt + Conformalize in Calibration

Transfer Learning for Conformal Prediction

Unsupervised

$$\mathcal{D}_{\text{cal}} = \{(\mathbf{l}_i), \}_{i=1}^N$$



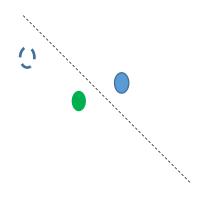
Transfer Learning for Conformal Prediction

Unsupervised

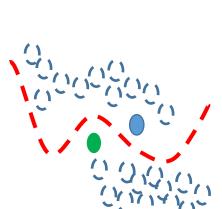
$$\mathcal{D}_{\text{cal}} = \{(\mathbf{l}_i), \}_{i=1}^N$$

2. Jointly modifies Cal/Test score distributions.

Transductive



Inductive
One test sample
at a time



 $u_{
m test}$

Transductive
Joint test-time
prediction

Transfer Learning for Conformal Prediction

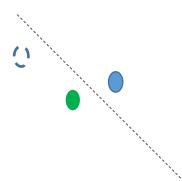
Unsupervised

$$\mathcal{D}_{\text{cal}} = \{(\mathbf{l}_i), \}_{i=1}^N$$

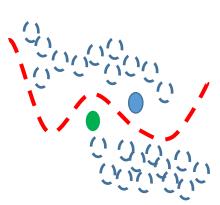
Transductive

Similarity matrix.

$$\mathbf{S} \in \mathbb{R}^{K \times (N+M)} = [l_{ki}]_{k=1,i=1}^{k=K,i=N+M}$$



Inductive
One test sample
at a time



 $D_{
m test}$

Transductive
Joint test-time
prediction

Conformal Optimal Transport

Learning goal: find the joint probability matrix (codes) which maximize the similarity assignment.

$$\max_{\mathbf{Q} \in \mathcal{Q}} tr(\mathbf{Q}^{\top} \mathbf{S})$$

where $\mathbf{Q} \in \mathbb{R}_+^{K \times (N+M)}$ is the assignment matrix, formed by individual codes for each sample, \mathbf{Q}_i .

Algorithm 1 Conf-OT conformal prediction.

```
set \mathcal{D}_{\text{test}} = \{(l_i)\}_{i=N+1}^{N+M}, non-conformity score function
   S, error level \alpha, entropic weight \tau, iterations T.
   // Block 1. - Transductive transfer learning.
   // Step 1.1. - Init. optimal transport problem.
2: \mathbf{S} \in \mathbb{R}^{K \times (N+M)} = [l_{ki}]_{k=1,i=1}^{k=K,i=N+M} // Sim. matrix.
```

1: **input:** calibration dataset $\mathcal{D}_{cal} = \{(l_i, y_i)\}_{i=1}^N$, query

Conformal Optimal Transport

Learning goal: find the joint probability matrix (codes) which maximize the similarity assignment.

$$\max_{\mathbf{Q} \in \mathcal{Q}} tr(\mathbf{Q}^{\top} \mathbf{S})$$

where $\mathbf{Q} \in \mathbb{R}_+^{K \times (N+M)}$ is the assignment matrix, formed by individual codes for each sample, \mathbf{Q}_i .

More concretely, ${\bf Q}$ is restricted to be an element of the transportation polytope:

$$Q = \{ \mathbf{Q} \mid \mathbf{Q} \mathbf{1}_{(N+M)} = \mathbf{m}, \mathbf{Q}^{\top} \mathbf{1}_K = \mathbf{u}_{(\mathbf{N}+\mathbf{M})} \}$$

Algorithm 1 Conf-OT conformal prediction.

```
set \mathcal{D}_{\text{test}} = \{(l_i)\}_{i=N+1}^{N+M}, non-conformity score function
   S, error level \alpha, entropic weight \tau, iterations T.
   // Block 1. - Transductive transfer learning.
   // Step 1.1. - Init. optimal transport problem.
2: \mathbf{S} \in \mathbb{R}^{K \times (N+M)} = [l_{ki}]_{k=1,i=1}^{k=K,i=N+M} // Sim. matrix.
```

1: **input:** calibration dataset $\mathcal{D}_{cal} = \{(l_i, y_i)\}_{i=1}^N$, query

Conformal Optimal Transport

Learning goal: find the joint probability matrix (codes) which maximize the similarity assignment.

$$\max_{\mathbf{Q} \in \mathcal{Q}} \ tr(\mathbf{Q}^{\top} \mathbf{S})$$

where $\mathbf{Q} \in \mathbb{R}_+^{K \times (N+M)}$ is the assignment matrix, formed by individual codes for each sample, \mathbf{Q}_i .

More concretely, Q is restricted to be an element of the transportation polytope:

$$\mathcal{Q} = \{\mathbf{Q} \mid \mathbf{Q}\mathbf{1}_{(N+M)} \neq \mathbf{m}, \mathbf{Q}^{\top}\mathbf{1}_{K} \neq \mathbf{u}_{(\mathbf{N}+\mathbf{M})}\}$$
 marginals!

Algorithm 1 Conf-OT conformal prediction.

```
    input: calibration dataset D<sub>cal</sub> = {(l<sub>i</sub>, y<sub>i</sub>)}<sup>N</sup><sub>i=1</sub>, query set D<sub>test</sub> = {(l<sub>i</sub>)}<sup>N+M</sup><sub>i=N+1</sub>, non-conformity score function S, error level α, entropic weight τ, iterations T.
    // Block 1. - Transductive transfer learning.
    // Step 1.1. - Init. optimal transport problem.
    S ∈ ℝ<sup>K×(N+M)</sup> = [l<sub>ki</sub>]<sup>k=K,i=N+M</sup><sub>k=1,i=1</sub> // Sim. matrix.
```

3:
$$\mathbf{m} = \frac{1}{N} \sum_{1}^{N} \mathbf{y}_{i}^{\text{obc}}$$
 // Label-marginal.
4: $\mathbf{u}_{(\mathbf{N}+\mathbf{M})} = \frac{1}{(N+M)} \mathbf{1}_{(N+M)}$ // Sample marginal.

// Step 1.2. - Compute renormalization vectors.

5:
$$\mathbf{Q}^{(0)} = (\exp(\mathbf{S}/\tau)/\sum(\exp(\mathbf{S}/\tau))$$
 // Init. codes

6:
$$\mathbf{c}^{(0)} = \mathbf{1}_{(N+M)}$$
 // Init. renormalization vector

7: **for**
$$t$$
 in $[1, ..., T]$ **do**

8:
$$\mathbf{r}^{(t)} = \mathbf{m}/(\mathbf{Q}^{(0)}\mathbf{c}^{(t-1)}) // \text{Eq. (9)}$$

9:
$$\mathbf{c}^{(t)} = \mathbf{u}_{(\mathbf{N}+\mathbf{M})}/(\mathbf{Q}^{(0)}\mathbf{r}^{(t)})$$
 // Eq. (10).

0: end for

// Step 1.3. - Compute codes.

11:
$$\mathbf{Q}^* = \operatorname{Diag}(\mathbf{r}^{(T)})\mathbf{Q}^{(0)}\operatorname{Diag}(\mathbf{c}^{(T)})$$
 // Transport codes

12:
$$\mathbf{Q}^* = \mathbf{Q}^* \mathrm{Diag}(1/\sum_k q_{ki}^*)$$
 // Normalize. // **Block 2.** - Conformal prediction.

13:
$$\mathcal{D}_{\text{cal}} = \{(q_i^{*\top}, y_i)\}_{i=1}^N, \hat{\mathcal{D}}_{\text{test}} = \{(q_i^{*\top})\}_{i=N+1}^{N+M}$$
// Step 2.1. - 1 - α non-conformity score quantile

14:
$$\{s_i\}_{i=1}^N = \{\mathcal{S}(q_i^{*\top}, y_i)\}_{i=1}^N$$
 // Non-conformity scores

15:
$$\hat{s} \leftarrow \{s_i\}_{i=1}^N$$
, α // Search threshold - Eq. (3) // Step 2.2. - Create query sets.

16: **return:**
$$\{\mathcal{C}(q_i^{*})\}_{i=N+1}^M // \text{Eq. } (4)$$

Conformal Optimal Transport

Optimization: We solve the linear program trough the efficient **Sinkhorn algorithm**, which incorporates an **entropic-constraint**.

$$\max_{\mathbf{Q} \in \mathcal{Q}} tr(\mathbf{Q}^{\top} \mathbf{S}) + \varepsilon \mathcal{H}(\mathbf{Q})$$

- input: calibration dataset D_{cal} = {(l_i, y_i)}^N_{i=1}, query set D_{test} = {(l_i)}^{N+M}_{i=N+1}, non-conformity score function S, error level α, entropic weight τ, iterations T.
 // Block 1. Transductive transfer learning.
 // Step 1.1. Init. optimal transport problem.
 S ∈ ℝ^{K×(N+M)} = [l_{ki}]^{k=K,i=N+M}_{k=1,i=1} // Sim. matrix.
 m = ½ ∑₁^N y_i^{obe} // Label-marginal.
- 4: $\mathbf{u}_{(\mathbf{N}+\mathbf{M})} = \frac{1}{(N+M)} \mathbf{1}_{(N+M)}$ // Sample marginal.
- // Step 1.2. Compute renormalization vectors. 5: $\mathbf{Q}^{(0)} = (\exp(\mathbf{S}/\tau) / \sum (\exp(\mathbf{S}/\tau))$ // Init. codes. 6: $\mathbf{c}^{(0)} = \mathbf{1}_{(N+M)}$ // Init. renormalization vector. 7: **for** t in $[1, \dots, T]$ **do** 8: $\mathbf{r}^{(t)} = \mathbf{m}/(\mathbf{Q}^{(0)}\mathbf{c}^{(t-1)})$ // Eq. (9).
 - 9: $\mathbf{c}^{(t)} = \mathbf{u_{(N+M)}}/(\mathbf{Q^{(0)}r^{(t)}})$ // Eq. (10).
- 10: end for
 // Step 1.3. Compute codes.
 11: Q* = Diag(r^(T))Q⁽⁰⁾Diag(c^(T)) // Transport codes.
- 12: $\mathbf{Q}^* = \mathbf{Q}^* \mathrm{Diag}(1/\sum_k q_{ki}^*)$ // Normalize.

```
// Block 2. - Conformal prediction.

13: \mathcal{D}_{cal} = \{(q_i^{*\top}, y_i)\}_{i=1}^N, \mathcal{D}_{test} = \{(q_i^{*\top})\}_{i=N+1}^{N+M}
// Step 2.1. - 1 - \alpha non-conformity score quantile.

14: \{s_i\}_{i=1}^N = \{\mathcal{S}(q_i^{*\top}, y_i)\}_{i=1}^N // Non-conformity scores.

15: \hat{s} \leftarrow \{s_i\}_{i=1}^N, \alpha // Search threshold - Eq. (3).
// Step 2.2. - Create query sets.

16: return: \{\mathcal{C}(q_i^{*\top})\}_{i=N+1}^M // Eq. (4).
```

Conformal Optimal Transport

Optimization: We solve the linear program trough the efficient **Sinkhorn algorithm**, which incorporates an **entropic-constraint**.

$$\max_{\mathbf{Q} \in \mathcal{Q}} tr(\mathbf{Q}^{\top} \mathbf{S}) + \varepsilon \mathcal{H}(\mathbf{Q})$$

Now, the soft codes \mathbf{Q}^* are the solution of the optimization problem, which can be efficiently optimized by computing marginal-renormalization vectors, such that:

$$\mathbf{Q}^* = \mathrm{Diag}(\mathbf{r}^{(t)})\mathbf{Q}^{(0)}\mathrm{Diag}(\mathbf{c}^{(t)})$$

Algorithm 1 Conf-OT conformal prediction.

- input: calibration dataset D_{cal} = {(l_i, y_i)}^N_{i=1}, query set D_{test} = {(l_i)}^{N+M}_{i=N+1}, non-conformity score function S, error level α, entropic weight τ, iterations T.
 // Block 1. Transductive transfer learning.
 // Step 1.1. Init. optimal transport problem.
 S ∈ ℝ^{K×(N+M)} = [l_{ki}]^{k=K,i=N+M}_{k=1,i=1} // Sim. matrix.
- 3: $\mathbf{m} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{y}_{i}^{\text{obe}} // \text{Label-marginal}.$
- 4: $\mathbf{u}_{(\mathbf{N}+\mathbf{M})} = \frac{1}{(N+M)} \mathbf{1}_{(N+M)}$ // Sample marginal.

```
// Step 1.2. - Compute renormalization vectors.

5: \mathbf{Q}^{(0)} = (\exp(\mathbf{S}/\tau)/\sum(\exp(\mathbf{S}/\tau)) // Init. codes.

6: \mathbf{c}^{(0)} = \mathbf{1}_{(N+M)} // Init. renormalization vector.
```

7: **for** t in [1, ..., T] **do**

8: $\mathbf{r}^{(t)} = \mathbf{m}/(\mathbf{Q}^{(0)}\mathbf{c}^{(t-1)})$ // Eq. (9).

9: $\mathbf{c}^{(t)} = \mathbf{u}_{(\mathbf{N}+\mathbf{M})}/(\mathbf{Q}^{(0)}\mathbf{r}^{(t)})$ // Eq. (10).

10: end for

// Step 1.3. - Compute codes.

11: $\mathbf{Q}^* = \operatorname{Diag}(\mathbf{r}^{(T)})\mathbf{Q}^{(0)}\operatorname{Diag}(\mathbf{c}^{(T)})$ // Transport codes.

12: $\mathbf{Q}^* = \mathbf{Q}^* \mathrm{Diag}(1/\sum_k q_{ki}^*)$ // Normalize.

```
// Block 2. - Conformal prediction.

13: \mathcal{D}_{cal} = \{(q_i^{*\top}, y_i)\}_{i=1}^N, \mathcal{D}_{test} = \{(q_i^{*\top})\}_{i=N+1}^{N+M}
// Step 2.1. - 1 - \alpha non-conformity score quantile.

14: \{s_i\}_{i=1}^N = \{\mathcal{S}(q_i^{*\top}, y_i)\}_{i=1}^N // Non-conformity scores.

15: \hat{s} \leftarrow \{s_i\}_{i=1}^N, \alpha // Search threshold - Eq. (3).
// Step 2.2. - Create query sets.

16: return: \{\mathcal{C}(q_i^{*\top})\}_{i=N+1}^M // Eq. (4).
```

Conformal Optimal Transport

Optimization: We solve the linear program trough the efficient **Sinkhorn algorithm**, which incorporates an **entropic-constraint**.

$$\max_{\mathbf{Q} \in \mathcal{Q}} tr(\mathbf{Q}^{\top} \mathbf{S}) + \varepsilon \mathcal{H}(\mathbf{Q})$$

Norm S as initial Q

Now, the soft codes \mathbf{Q}^* are the solution of the optimization problem, which can be efficiently optimized by computing marginal-renormalization vectors, such that:

$$\mathbf{Q}^* = \mathrm{Diag}(\mathbf{r}^{(t)})\mathbf{Q}^{(0)}\mathrm{Diag}(\mathbf{c}^{(t)})$$

```
1: input: calibration dataset \mathcal{D}_{\text{cal}} = \{(l_i, y_i)\}_{i=1}^N, query
      set \mathcal{D}_{	ext{test}} = \{(l_i)\}_{i=N+1}^{N+M}, non-conformity score function
      S, error level \alpha, entropic weight \tau, iterations T.
      // Block 1. - Transductive transfer learning.
      // Step 1.1. - Init. optimal transport problem.
 2: \mathbf{S} \in \mathbb{R}^{K \times (N+M)} = [l_{ki}]_{k=1,i=1}^{k=K,i=N+M} // Sim. matrix.
 3: \mathbf{m} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{y}_{i}^{\text{obc}} // \text{Label-marginal.}
 4: \mathbf{u}_{(\mathbf{N}+\mathbf{M})} = \frac{1}{(N+M)} \mathbf{1}_{(N+M)} // Sample marginal.
// Step 1.2. - Compute renormalization vectors.
 5: \mathbf{Q}^{(0)} = (\exp(\mathbf{S}/\tau) / \sum (\exp(\mathbf{S}/\tau)) / / \text{Init. codes.}
 6: \mathbf{c}^{(0)} = \mathbf{1}_{(N+M)} // Init. renormalization vector.
 7: for t in [1, ..., T] do
         \mathbf{r}^{(t)} = \mathbf{m}/(\mathbf{Q}^{(0)}\mathbf{c}^{(t-1)}) // Eq. (9).
           \mathbf{c}^{(t)} = \mathbf{u}_{(\mathbf{N}+\mathbf{M})}/(\mathbf{Q}^{(0)}\mathbf{r}^{(t)}) // Eq. (10).
10: end for
      // Step 1.3. - Compute codes.
11: \mathbf{Q}^* = \operatorname{Diag}(\mathbf{r}^{(T)})\mathbf{Q}^{(0)}\operatorname{Diag}(\mathbf{c}^{(T)}) // Transport codes.
 12: \mathbf{Q}^* = \mathbf{Q}^* \mathrm{Diag}(1/\sum_k q_{ki}^*) // Normalize.
```

```
// Block 2. - Conformal prediction.

13: \mathcal{D}_{cal} = \{(q_i^{*\top}, y_i)\}_{i=1}^N, \mathcal{D}_{test} = \{(q_i^{*\top})\}_{i=N+1}^{N+M}
// Step 2.1. - 1 - \alpha non-conformity score quantile.

14: \{s_i\}_{i=1}^N = \{\mathcal{S}(q_i^{*\top}, y_i)\}_{i=1}^N // Non-conformity scores.

15: \hat{s} \leftarrow \{s_i\}_{i=1}^N, \alpha // Search threshold - Eq. (3).
// Step 2.2. - Create query sets.

16: return: \{\mathcal{C}(q_i^{*\top})\}_{i=N+1}^M // Eq. (4).
```

Conformal Optimal Transport

Optimization: We solve the linear program trough the efficient **Sinkhorn algorithm**, which incorporates an **entropic-constraint**.

$$\max_{\mathbf{Q} \in \mathcal{Q}} tr(\mathbf{Q}^{\top} \mathbf{S}) + \varepsilon \mathcal{H}(\mathbf{Q})$$

Incorporate prior label marginal

Now, the soft codes \mathbf{Q}^* are the solution of the optimization problem, which can be efficiently optimized by computing marginal-renormalization vectors, such that:

$$\mathbf{Q}^* = \mathrm{Diag}(\mathbf{r}^{(t)})\mathbf{Q}^{(0)}\mathrm{Diag}(\mathbf{c}^{(t)})$$

Algorithm 1 Conf-OT conformal prediction.

```
1: input: calibration dataset \mathcal{D}_{cal} = \{(l_i, y_i)\}_{i=1}^N, query set \mathcal{D}_{test} = \{(l_i)\}_{i=N+1}^{N+M}, non-conformity score function \mathcal{S}, error level \alpha, entropic weight \tau, iter // Block 1. - Transductive transfer learn // Step 1.1. - Init. optimal transport process: \mathbf{S} \in \mathbb{R}^{K \times (N+M)} = [l_{ki}]_{k=1,i=1}^{k=K,i=N+M} // 3: \mathbf{m} = \frac{1}{N} \sum_{1}^{N} \mathbf{y}_{i}^{\text{obe}} // Label-marginal.

4: \mathbf{u}_{(\mathbf{N}+\mathbf{M})} = \frac{1}{(N+M)} \mathbf{1}_{(N+M)} // Sample marginal.
```

4: $\mathbf{u_{(N+M)}} = \frac{1}{(N+M)} \mathbf{1}_{(N+M)} / | \text{Sample marginal.}$ // Step 1.2. - Compute renormalization vectors.

5: $\mathbf{Q}^{(0)} = (\exp(\mathbf{S}/\tau) / \sum (\exp(\mathbf{S}/\tau)) / | \text{Init. codes.}$ 6: $\mathbf{c}^{(0)} = \mathbf{1}_{(N+M)} / | \text{Init. renormalization vector.}$ 7: $\mathbf{for} t$ in $[1, \dots, T]$ do

8: $\mathbf{r}^{(t)} = \mathbf{m} / (\mathbf{Q}^{(0)} \mathbf{c}^{(t-1)}) / | \text{Eq. (9).}$ 9: $\mathbf{c}^{(t)} = \mathbf{u_{(N+M)}} / (\mathbf{Q}^{(0)} \mathbf{r}^{(t)}) / | \text{Eq. (10).}$ 10: \mathbf{end} for

// Step 1.3. - Compute codes.

11: $\mathbf{Q}^* = \mathrm{Diag}(\mathbf{r}^{(T)}) \mathbf{Q}^{(0)} \mathrm{Diag}(\mathbf{c}^{(T)}) / | \text{Transport codes.}$ 12: $\mathbf{Q}^* = \mathbf{Q}^* \mathrm{Diag}(\mathbf{1} / \sum_k q_{ki}^*) / | \text{Normalize.}$

```
// Block 2. - Conformal prediction.

3: \mathcal{D}_{cal} = \{(q_i^{*\top}, y_i)\}_{i=1}^{N}, \mathcal{D}_{test} = \{(q_i^{*\top})\}_{i=N+1}^{N+M}

// Step 2.1. - 1 - \alpha non-conformity score quantile.

4: \{s_i\}_{i=1}^{N} = \{\mathcal{S}(q_i^{*\top}, y_i)\}_{i=1}^{N} // Non-conformity scores.

5: \hat{s} \leftarrow \{s_i\}_{i=1}^{N}, \alpha // Search threshold - Eq. (3).

// Step 2.2. - Create query sets.

6: return: \{\mathcal{C}(q_i^{*\top})\}_{i=N+1}^{M} // Eq. (4).
```

Conformal Optimal Transport

Optimization: We solve the linear program trough the efficient **Sinkhorn algorithm**, which incorporates an **entropic-constraint**.

$$\max_{\mathbf{Q} \in \mathcal{Q}} tr(\mathbf{Q}^{\top} \mathbf{S}) + \varepsilon \mathcal{H}(\mathbf{Q})$$

Incorporate prior sample marginal

Now, the soft codes \mathbf{Q}^* are the solution of the optimization problem, which can be efficiently optimized by computing marginal-renormalization vectors, such that:

$$\mathbf{Q}^* = \mathrm{Diag}(\mathbf{r}^{(t)})\mathbf{Q}^{(0)}\mathrm{Diag}(\mathbf{c}^{(t)})$$

```
1: input: calibration dataset \mathcal{D}_{\mathrm{cal}} = \{(l_i, y_i)\}_{i=1}^N, query
     set \mathcal{D}_{	ext{test}} = \{(l_i)\}_{i=N+1}^{N+M}, non-conformity score function
     S, error level \alpha, entropic weight \tau, it
                                                                  Divide columns by
     // Block 1. - Transductive transfer lea
     // Step 1.1. - Init. optimal transport p
                                                                    observed sample
2: \mathbf{S} \in \mathbb{R}^{K \times (N+M)} = [l_{ki}]_{k=1,i=1}^{k=K,i=N+M}
                                                                             marginal
 3: \mathbf{m} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{y}_{i}^{\text{obc}} // Label-marginal.
 4: \mathbf{u}_{(\mathbf{N}+\mathbf{M})} = \frac{1}{(N+M)} \mathbf{1}_{(N+M)} // Sample marginal
     // Step 1.2. - Compute renormalization ve
 5: \mathbf{Q}^{(0)} = (\exp(\mathbf{S}/\tau) / \sum (\exp(\mathbf{S}/\tau)) / / \text{ Ipid. codes.}
     \mathbf{c}^{(0)} = \mathbf{1}_{(N+M)} // Init. renormalization vector.
 7: for t in [1, ..., T] do
           \mathbf{r}^{(t)} = \mathbf{m}/(\mathbf{Q}^{(0)}\mathbf{c}^{(t-1)}) Eq. (9).
           \mathbf{c}^{(t)} = \mathbf{u_{(N+M)}}/(\mathbf{Q}^{(0)}\mathbf{r}^{(t)}) // Eq. (10).
10: end for
     // Step 1.3. - Compute codes.
11: \mathbf{Q}^* = \operatorname{Diag}(\mathbf{r}^{(T)})\mathbf{Q}^{(0)}\operatorname{Diag}(\mathbf{c}^{(T)}) // Transport codes.
12: \mathbf{Q}^* = \mathbf{Q}^* \mathrm{Diag}(1/\sum_k q_{ki}^*) // Normalize.
```

```
// Block 2. - Conformal prediction.

13: \mathcal{D}_{cal} = \{(q_i^{*\top}, y_i)\}_{i=1}^N, \mathcal{D}_{test} = \{(q_i^{*\top})\}_{i=N+1}^{N+M} // Step 2.1. - 1 - \alpha non-conformity score quantile.

14: \{s_i\}_{i=1}^N = \{\mathcal{S}(q_i^{*\top}, y_i)\}_{i=1}^N // Non-conformity scores.

15: \hat{s} \leftarrow \{s_i\}_{i=1}^N, \alpha // Search threshold - Eq. (3). // Step 2.2. - Create query sets.

16: return: \{\mathcal{C}(q_i^{*\top})\}_{i=N+1}^M // Eq. (4).
```

Conformal Optimal Transport

Optimization: We solve the linear program trough the efficient **Sinkhorn algorithm**, which incorporates an **entropic-constraint**.

$$\max_{\mathbf{Q} \in \mathcal{Q}} tr(\mathbf{Q}^{\top} \mathbf{S}) + \varepsilon \mathcal{H}(\mathbf{Q})$$

Now, the soft codes \mathbf{Q}^* are the solution of the optimization problem, which can be efficiently optimized by computing marginal-renormalization vectors, such that:

$$\mathbf{Q}^* = \mathrm{Diag}(\mathbf{r}^{(t)})\mathbf{Q}^{(0)}\mathrm{Diag}(\mathbf{c}^{(t)})$$

```
Algorithm 1 Conf-OT conformal prediction.
```

```
    input: calibration dataset D<sub>cal</sub> = {(l<sub>i</sub>, y<sub>i</sub>)}<sup>N</sup><sub>i=1</sub>, query set D<sub>test</sub> = {(l<sub>i</sub>)}<sup>N+M</sup><sub>i=N+1</sub>, non-conformity score function S, error level α, entropic weight τ, iterations T.
    // Block 1. - Transductive transfer learning.
    // Step 1.1. - Init. optimal transport problem.
    S ∈ ℝ<sup>K×(N+M)</sup> = [l<sub>ki</sub>]<sup>k=K,i=N+M</sup><sub>k=1,i=1</sub> // Sim. matrix.
    m = ½ ∑<sup>N</sup><sub>1</sub> y<sup>obe</sup><sub>i</sub> // Label-marginal.
    u<sub>(N+M)</sub> = ½ (N+M) 1 (N+M) // Sample marginal.
    Step 1.2. - Compute renormalization vectors.
```

```
// Step 1.2. - Compute renormalization vectors.

5: \mathbf{Q}^{(0)} = (\exp(\mathbf{S}/\tau) / \sum (\exp(\mathbf{S}/\tau)) / / \text{Init. codes.}

6: \mathbf{c}^{(0)} = \mathbf{1}_{(N+M)} / / \text{Init. renormalization vector.}

7: \mathbf{for} \ t \ \text{in} \ [1, \dots, T] \ \mathbf{do}

8: \mathbf{r}^{(t)} = \mathbf{m} / (\mathbf{Q}^{(0)} \mathbf{c}^{(t-1)}) / / \text{Eq. (9).}

9: \mathbf{c}^{(t)} = \mathbf{u}_{(\mathbf{N}+\mathbf{M})} / (\mathbf{Q}^{(0)} \mathbf{r}^{(t)}) / / \text{Eq. (10).}

10: \mathbf{end} \ \mathbf{for}

// Step 1.3. - Compute codes.

11: \mathbf{Q}^* = \text{Diag}(\mathbf{r}^{(T)}) \mathbf{Q}^{(0)} \text{Diag}(\mathbf{c}^{(T)}) / / \text{Transport codes.}

12: \mathbf{Q}^* = \mathbf{Q}^* \text{Diag}(1 / \sum_k q_{ki}^*) / / \text{Normalize.}
```

// Nock 2. - Conformal prediction.

13: $\mathcal{D}_{cal} = \{(q \mid Apply \text{ renorm. vectors and sample-wise.}\}$ 14: $\{s_i\}_{i=1}^N = \{s_i\}_{i=1}^N = \{s_i\}_{i=1}^N = \{c_i\}_{i=1}^N = \{c_i\}_{i=1}^N$

Conformal Optimal Transport

Conformal prediction: we follow the standard SCP setting using codes instead of the original probabilities.

$$\mathcal{D}_{\text{cal}} = \{(\mathbf{q}_i, y_i)\}_{i=1}^N$$

$$\mathcal{D}_{\text{test}} = \{(\mathbf{q}_i,)\}_{i=N+1}^{N+M}$$

- 1: input: calibration dataset $\mathcal{D}_{\mathrm{cal}} = \{(l_i, y_i)\}_{i=1}^N,$ query set $\mathcal{D}_{ ext{test}} = \{(l_i)\}_{i=N+1}^{N+M}$, non-conformity score function S, error level α , entropic weight τ , iterations T. // Block 1. - Transductive transfer learning. // Step 1.1. - Init. optimal transport problem. 2: $\mathbf{S} \in \mathbb{R}^{K \times (N+M)} = [l_{ki}]_{k=1,i=1}^{k=K,i=N+M}$ // Sim. matrix. 3: $\mathbf{m} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{y}_{i}^{\text{obc}}$ // Label-marginal. 4: $\mathbf{u}_{(\mathbf{N}+\mathbf{M})} = \frac{1}{(N+M)} \mathbf{1}_{(N+M)}$ // Sample marginal. // Step 1.2. - Compute renormalization vectors. 5: $\mathbf{Q}^{(0)} = \left(\exp(\mathbf{S}/\tau)/\sum(\exp(\mathbf{S}/\tau)\right)$ // Init. codes. 6: $\mathbf{c}^{(0)} = \mathbf{1}_{(N+M)}$ // Init. renormalization vector. 7: **for** t in [1, ..., T] **do** $\mathbf{r}^{(t)} = \mathbf{m}/(\mathbf{Q}^{(0)}\mathbf{c}^{(t-1)})$ // Eq. (9). $\mathbf{c}^{(t)} = \mathbf{u}_{(\mathbf{N}+\mathbf{M})}/(\mathbf{Q}^{(0)}\mathbf{r}^{(t)})$ // Eq. (10). 10: end for // Step 1.3. - Compute codes. 11: $\mathbf{Q}^* = \operatorname{Diag}(\mathbf{r}^{(T)})\mathbf{Q}^{(0)}\operatorname{Diag}(\mathbf{c}^{(T)})$ // Transport codes. 12: $\mathbf{Q}^* = \mathbf{Q}^* \operatorname{Diag}(1/\sum_k q_{ki}^*)$ // Normalize.
- // Block 2. Conformal prediction.

 13: $\mathcal{D}_{cal} = \{(q_i^{*\top}, y_i)\}_{i=1}^N, \mathcal{D}_{test} = \{(q_i^{*\top})\}_{i=N+1}^{N+M}$ // Step 2.1. 1α non-conformity score quantile.

 14: $\{s_i\}_{i=1}^N = \{\mathcal{S}(q_i^{*\top}, y_i)\}_{i=1}^N$ // Non-conformity scores.

 15: $\hat{s} \leftarrow \{s_i\}_{i=1}^N, \alpha$ // Search threshold Eq. (3).
 // Step 2.2. Create query sets.

 16: **return:** $\{\mathcal{C}(q_i^{*\top})\}_{i=N+1}^M$ // Eq. (4).

Enhancing popular non-conformity scores

			$\alpha = 0.10$	<u> </u>			$\alpha = 0.0$	
Method			$\alpha = 0.10$		_		$\alpha = 0.0$	
	Top-1↑	Cov	Size↓	$CCV \downarrow$		Cov.	Size↓	$CCV \downarrow$
CLIP ResNet-	50							
LAC[42]	-54.7	0.900	-10.77	9.82	_	$\overline{0.950}$	19.22	5.91
w/ Conf-OT	57.3 _{+2.6}	0.900	8.61.2.2	9.15 _{-0.7}		0.951	15.53 _{-3.7}	5.61 _{-0.3}
APS [54]	54.7	0.900	16.35	8.36		0.950	26.50	5.34
w/ Conf-OT	57.3 _{+2.6}	0.900	12.94 _{-3.4}	7.64 _{-0.7}		0.950	20.96-5.5	5.03 _{-0.3}
RAPS [2]	54.7	0.900	13.37	8.46		0.950	22.06	5.44
w/ Conf-OT	57.3 _{+2.6}	0.900	11.17 _{-2.2}	7.72 _{-0.7}		0.950	17.24 _{-4.8}	5.19 _{-0.3}
CLIP ViT-B/1	6							
LAC[42]	-63.8	0.899	$-\ \overline{5}.5\overline{2}\ -$	10.37	_	$\overline{0.950}$	10.24	$-6.1\overline{4}$
w/ Conf-OT	66.7 _{+2.9}	0.900	4.40-1.1	9.48 _{-0.9}		0.949	7.99 _{-2.3}	5.80 _{-0.3}
APS [54]	63.8	0.900	9.87	8.39		0.950	16.92	5.51
w/ Conf-OT	66.7 _{+2.9}	0.899	7.64 _{-2.2}	7.44 _{-1.0}		0.949	12.58 _{-4.3}	5.09 _{-0.4}
RAPS [2]	63.8	0.900	8.12	8.50		0.950	12.66	5.52
w/ Conf-OT	66.7 _{+2.9}	0.900	6.68 _{-1.4}	7.48 _{-1.0}		0.949	10.11-2.6	5.16 _{-0.4}

■ Enhancing popular non-conformity scores Valid coverage!

						1	
Method			$\alpha = 0.1$	0	$\alpha = 0.05$		
	Top-1↑	Cov	Size↓	CCV↓	Cov	Size↓	CCV↓
CLIP ResNet-	50		1				
LAC[42]	-54.7	0.900	_ <u>10</u> .77 _	⁻ 9.82 ⁻ ⁻	$0.9\overline{5}0^{-}$	19.22	- 5 .91
w/ Conf-OT	57.3 _{+2.6}	0.900	8.61.2.2	9.15 _{-0.7}	0.951	15.53 _{-3.7}	5.61 _{-0.3}
APS [54]	54.7	0.900	16.35	8.36	0.950	26.50	5.34
w/ Conf-OT	57.3 _{+2.6}	0.900	12.94 _{-3.4}	7.64 _{-0.7}	0.950	20.96-5.5	5.03 _{-0.3}
RAPS [2]	54.7	0.900	13.37	8.46	0.950	22.06	5.44
w/ Conf-OT	57.3 _{+2.6}	0.900	11.17 _{-2.2}	7.72 _{-0.7}	0.950	17.24 _{-4.8}	5.19 _{-0.3}
CLIP ViT-B/1	6						
LAC [42]	-63.8	0.899	$\overline{5.52}$ -	10.37	$0.9\overline{5}0$	10.24	- 6 .1 4
w/ Conf-OT	66.7 _{+2.9}	0.900	4.40 _{-1.1}	9.48 _{-0.9}	0.949	7.99 _{-2.3}	5.80 _{-0.3}
APS [54]	63.8	0.900	9.87	8.39	0.950	16.92	5.51
w/ Conf-OT	66.7 _{+2.9}	0.899	7.64 _{-2.2}	7.44 _{-1.0}	0.949	12.58-4.3	5.09 _{-0.4}
RAPS [2]	63.8	0.900	8.12	8.50	0.950	12.66	5.52
w/ Conf-OT	66.7 _{+2.9}	0.900	6.68 _{-1.4}	7.48 _{-1.0}	0.949	10.11.2.6	5.16 _{-0.4}
				•		/	

Comparison to popular transductive methods

Method					$\alpha = 0.1$.0
	Top-1↑	T	GPU	Cov.	Size↓	CCV↓
LAC [42]	63.8	0.42	-	0.899	5.52	10.37
$\overline{\text{TIM}}_{\text{KL}(\widehat{\mathbf{m}} \mathbf{u}_K)}[6]$	$\overline{64.7}_{+0.9}$	$-1\overline{1.05}$	8.24	0.899	$8.3\overline{0}_{+2.8}$	$1\overline{0.41}_{+0.0}$
$TIM_{KL(\widehat{\mathbf{m}} \mathbf{m})}$ [6]	$65.0_{+1.2}$	11.03	8.24	0.898	$7.73_{+2.2}$	$10.89_{+0.5}$
TransCLIP [74]	$65.1_{+1.3}$	12.00	12.2	0.892	$5.76_{\pm0.2}$	$11.02_{+0.7}$
Conf-OT	66.7 _{+2.9}	0.61	-	0.900	4.40 _{-1.1}	9.48 _{-0.9}

Comparison to popular transductive methods

Method			$\alpha = 0.10$				
	Top-1↑	T	GPU	Cov.	Size↓	CCV↓	
LAC [42]	63.8	0.42	-	0.899	5.52	10.37	
$\overline{\text{TIM}}_{\text{KL}(\widehat{\mathbf{m}} \mathbf{u}_K)} \overline{[6]}$	$\overline{64.7}_{+0.9}$	$-1\overline{1.05}$	8.24	0.899	$\overline{8.30}_{+2.8}$	$1\overline{0}.4\overline{1}_{+0.0}$	
$TIM_{KL(\widehat{\mathbf{m}} \mathbf{m})}$ [6]	$65.0_{+1.2}$	11.03	8.24	0.898	$7.73_{+2.2}$	$10.89_{+0.5}$	
TransCLIP [74]	$65.1_{+1.3}$	12.00	12.2	0.892	$5.76_{\pm0.2}$	$11.02_{\pm 0.7}$	
Conf-OT	66.7 _{+2.9}	0.61	-	0.900	4.40 _{-1.1}	9.48 _{-0.9}	

training-free

no improvement

Better than SoTA even in the discriminative aspect!

Evaluation of the data-efficiency

Method	Ratio		$\alpha = 0.10$			
	Calib - Test	Top-1↑	Cov.	Size↓	CCV↓	
	0.1 - 0.9	63.8	0.903	7.71	9.65	
LAC	0.2 - 0.8	63.8	0.899	5.56	9.80	
	0.5 - 0.5	63.8	0.899	5.52	10.37	
	0.8 - 0.2	63.8	0.899	5.56	11.70	
	0.1 - 0.9	66.6	0.901	4.53	8.73	
Conf-OT+LAC	0.2 - 0.8	66.7	0.899	4.39	8.86	
Coni-O1+LAC	0.5 - 0.5	66.7	0.900	4.40	9.48	
	0.8 - 0.2	66.7	0.899	4.41	11.12	

Method	M		$\alpha = 0.10$				
		Top-1↑	Cov.	Size↓	CCV↓		
LAC	-	63.8	0.899	5.52	10.37		
w/ Conf-OT	Full	66.7	0.900	4.40	9.48		
w/ Conf-OT	$^{-}3\overline{2}$ $^{-}$	66.5	0.898	$-\frac{1}{4.43}$	9.66		
w/ Conf-OT	16	66.5	0.898	4.43	9.67		
w/ Conf-OT	8	66.6	0.898	4.42	9.67		

Robustness to small calibration sets

Robustness to small query inputs

Evaluation of the data-efficiency

Method	Ratio $\alpha = 0.10$				
	Calib - Test	Top-1↑	Cov.	Size↓	CCV↓
	0.1 - 0.9	63.8	0.903	7.71	9.65
LAC	0.2 - 0.8	63.8	0.899	5.56	9.80
	0.5 - 0.5	63.8	0.899	5.52	10.37
	0.8 - 0.2	63.8	0.899	5.56	11.70
Conf-OT+LAC	0.1 - 0.9	66.6	0.901	4.53	8.73
	0.2 - 0.8	66.7	0.899	4.39	8.86
	0.5 - 0.5	66.7	0.900	4.40	9.48
	0.8 - 0.2	66.7	0.899	4.41	11.12

Robustness to small calibration sets

Method	M		$\alpha = 0.10$				
		Top-1↑	Cov.	Size↓	CCV↓		
LAC	-	63.8	0.899	5.52	10.37		
w/ Conf-OT	Full	66.7	0.900	4.40	9.48		
w/Conf-OT	$-3\overline{2}$	66.5	0.898	$ \overline{4.43}$	9.66		
w/ Conf-OT	16	66.5	0.898	4.43	9.67		
w/ Conf-OT	8	66.6	0.898	4.42	9.67		

Robustness to small query inputs

Julio Silva-Rodríguez

Ismail Ben Ayed

ÉTS Montréal

Jose Dolz

