

Julio Silva-Rodríguez



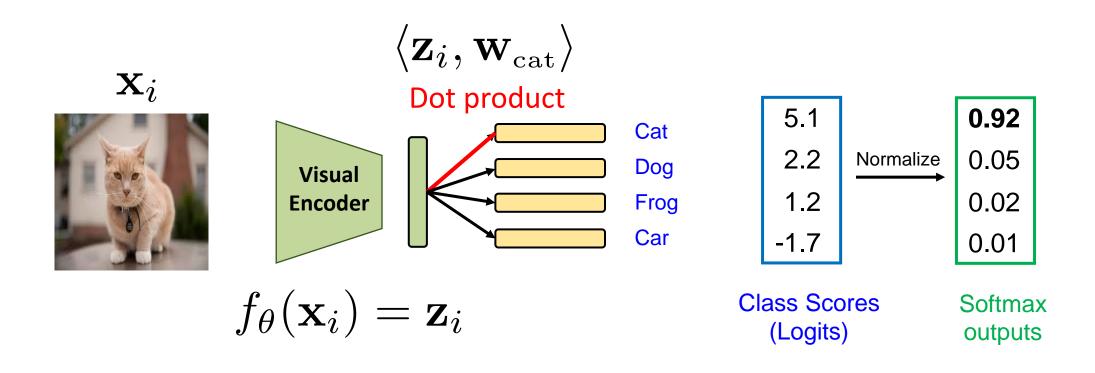
Ismail Ben Ayed

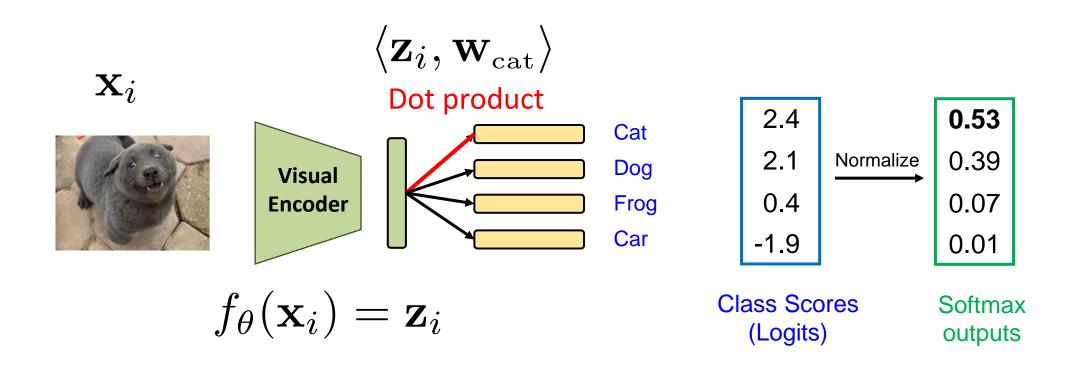


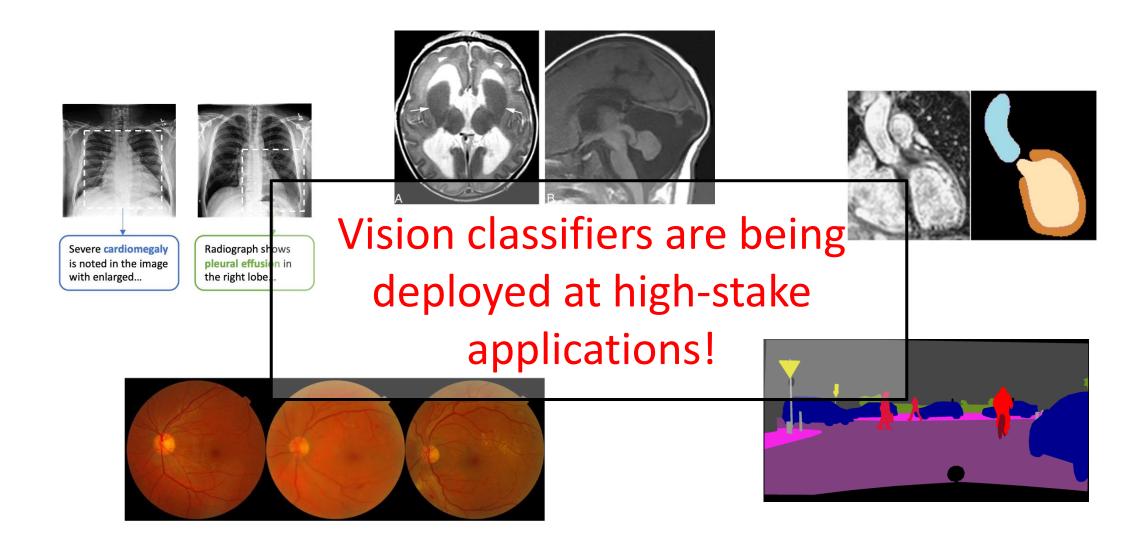
ÉTS Montréal

Jose Dolz

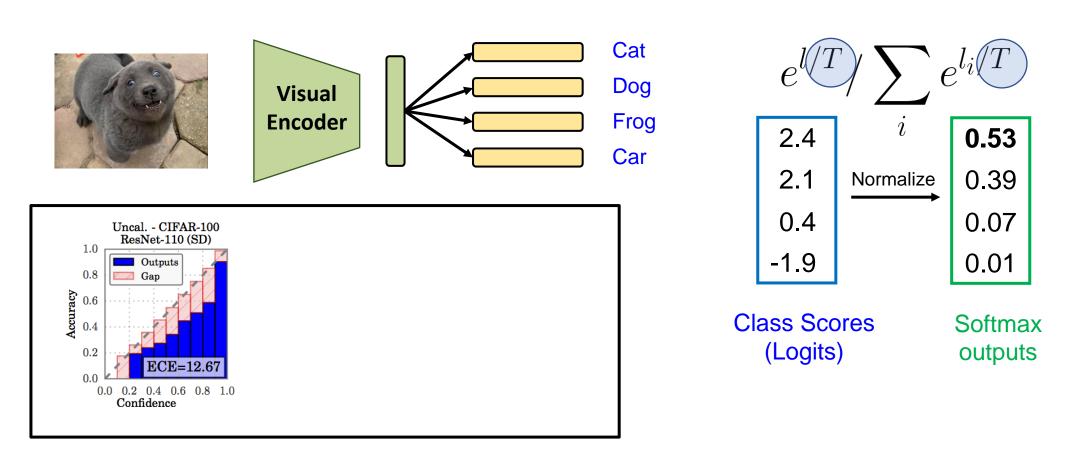




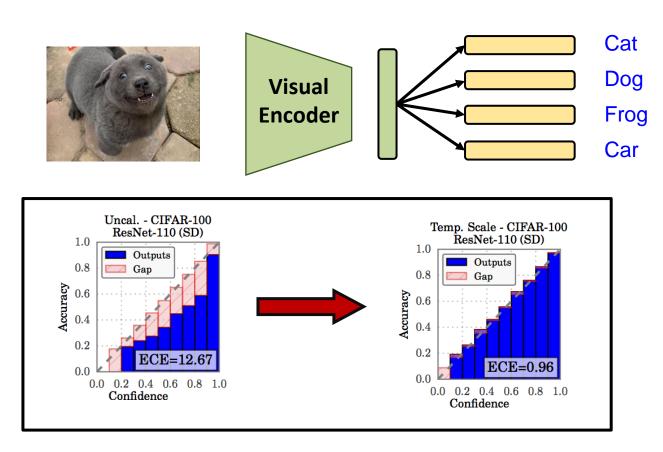


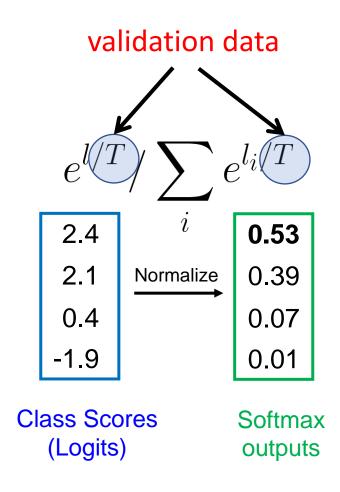


#### Model calibration

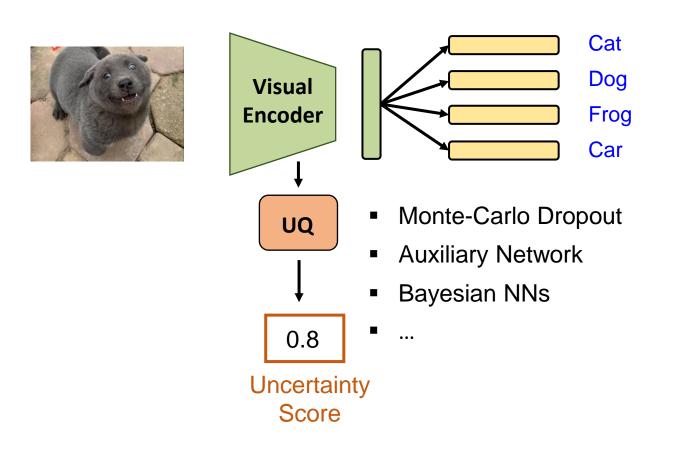


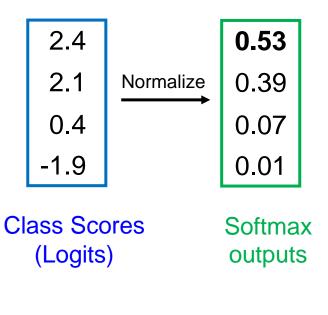
#### Model calibration



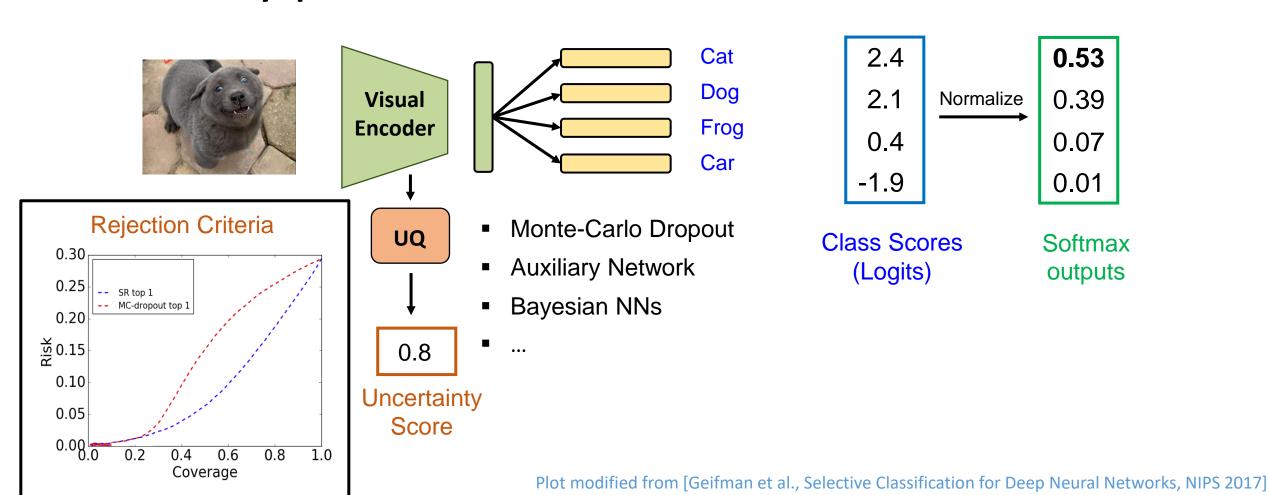


#### Uncertainty quantification





#### Uncertainty quantification



Limitations, pitfalls.

#### 1. Why to reject samples?



Cat (p=0.53, u=0.8)
REJECT ×



{Cat (p=0.53), **Dog** (p=0.29)}

Limitations, pitfalls.

#### 1. Why to reject samples?



Cat (p=0.53, u=0.8)

REJECT ×



{Cat (p=0.53), **Dog** (p=0.29)}

| Weight                                | Acc@1  | Acc@5  |
|---------------------------------------|--------|--------|
| AlexNet_Weights.IMAGENET1K_V1         | 56.522 | 79.066 |
| ConvNeXt_Base_Weights.IMAGENET1K_V1   | 84.062 | 96.87  |
| ConvNeXt_Large_Weights.IMAGENET1K_V1  | 84.414 | 96.976 |
| ConvNeXt_Small_Weights.IMAGENET1K_V1  | 83.616 | 96.65  |
| ConvNeXt_Tiny_Weights.IMAGENET1K_V1   | 82.52  | 96.146 |
| DenseNet121_Weights.IMAGENET1K_V1     | 74.434 | 91.972 |
| DenseNet161_Weights.IMAGENET1K_V1     | 77.138 | 93.56  |
| DenseNet169_Weights.IMAGENET1K_V1     | 75.6   | 92.806 |
| DenseNet201_Weights.IMAGENET1K_V1     | 76.896 | 93.37  |
| EfficientNet_B0_Weights.IMAGENET1K_V1 | 77.692 | 93.532 |
| EfficientNet_B1_Weights.IMAGENET1K_V1 | 78.642 | 94.186 |

https://pytorch.org/vision/stable/models.html



{fox squirrel}



{marmot, fox squirrel, mink, weasel, beaver}

From [Uncertainty Sets for Image Classifiers Using Conformal Prediction, ICLR 2021]

Limitations, pitfalls.

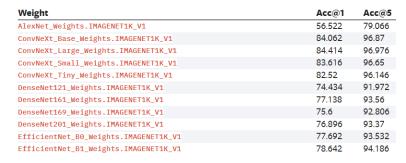
#### 1. Why to reject samples?



Cat (p=0.53, u=0.8) REJECT X



{Cat (p=0.53), **Dog** (p=0.29)}



https://pytorch.org/vision/stable/models.html



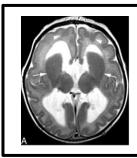
{fox squirrel}



{marmot, fox squirrel, mink, weasel, beaver}

From [Uncertainty Sets for Image Classifiers Using Conformal Prediction, ICLR 2021]

#### 2. Lack of guarantees.



"Set of predictions that covers the true diagnosis with a high probability (e.g., 95%)".

**Conformal prediction** (CP) is a machine learning freamework that provides **model agnostic**, and **distribution-fre**e, **finite-sample vailidy guarantees** for handling reliability, by producing **predictive sets**.

**Conformal prediction** (CP) is a machine learning freamework that provides **model agnostic**, and **distribution-fre**e, **finite-sample vailidy guarantees** for handling reliability, by producing **predictive sets**.

- Random data points  $(\mathbf{x},y)$  from a data distribution  $\mathcal{P}_{\mathcal{X}\mathcal{Y}}$  .
- Label space  $\mathcal{Y} = \{1, 2, ..., K\}$ .
- Set-valued mapping function  $\mathcal{C}:\mathcal{X}\to 2^K$ , such that  $C(\mathbf{x})\subset\mathcal{Y}$  .
- Desired error level  $\alpha \in (0,1)$  .

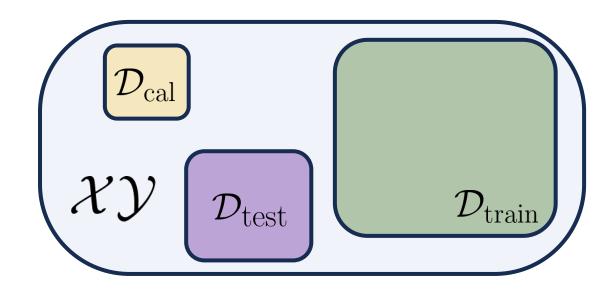
**Conformal prediction** (CP) is a machine learning freamework that provides **model agnostic**, and **distribution-fre**e, **finite-sample vailidy guarantees** for handling reliability, by producing **predictive sets**.

- Random data points  $(\mathbf{x},y)$  from a data distribution  $\mathcal{P}_{\mathcal{X}\mathcal{Y}}$  .
- Label space  $\mathcal{Y} = \{1, 2, ..., K\}$ .
- Set-valued mapping function  $\mathcal{C}:\mathcal{X}\to 2^K$ , such that  $C(\mathbf{x})\subset\mathcal{Y}$  .
- Desired error level  $\alpha \in (0,1)$  .

#### **Coverage property**

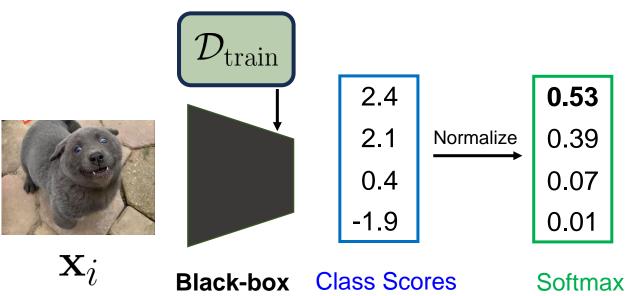
$$\mathcal{P}(Y \in C(\mathbf{x})) \geq 1 - \alpha$$
 (marginal over  $\mathcal{P}_{\mathcal{X}\mathcal{Y}}$  )

Split conformal prediction (SCP).



outputs

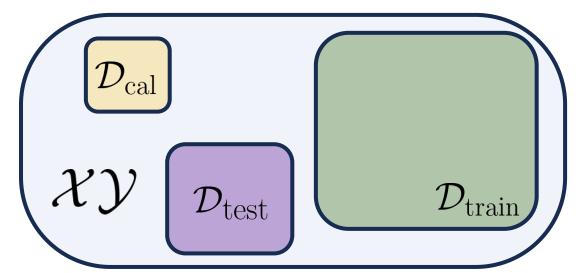
Split conformal prediction (SCP).



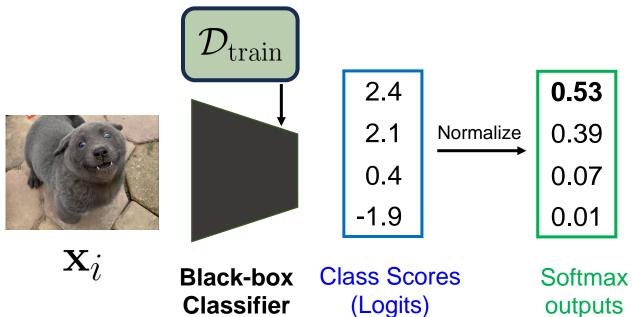
Classifier

 $\mathbf{p}_i = \pi(\mathbf{x}_i)$ 

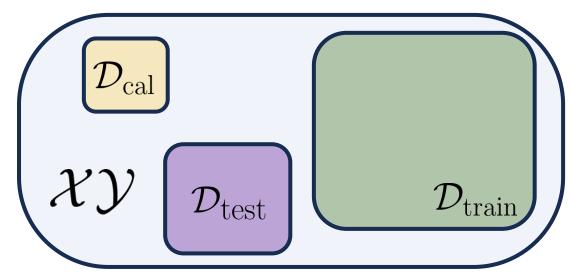
(Logits)



Split conformal prediction (SCP).



 $\mathbf{p}_i = \pi(\mathbf{x}_i)$ 



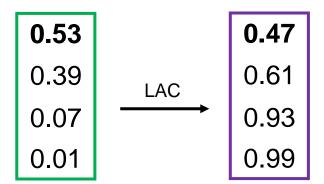
$$\mathcal{D}_{\text{cal}} = \{(\pi(\mathbf{x}_i), y_i)\}_{i=1}^N$$

$$\mathcal{D}_{\text{test}} = \{(\pi(\mathbf{x}_i),)\}_{i=N+1}^{N+M}$$



- Split conformal prediction (SCP).
- 1. Define a non-conformity score.

evaluated 
$$s_{y} = \mathcal{S}(\mathbf{p}, y)$$
 evaluated

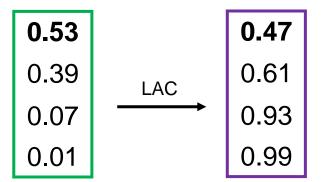




evaluated

- Split conformal prediction (SCP).
- 1. Define a <u>non-conformity score</u>.

$$S_{(y)} = S(\mathbf{p}, y)$$
 per label



2. Compute the cumulative score distribution from the calibration set for true labels.

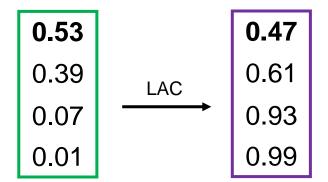
$$s_i = \mathcal{S}(\mathbf{p}_i, y_i)$$

0.61

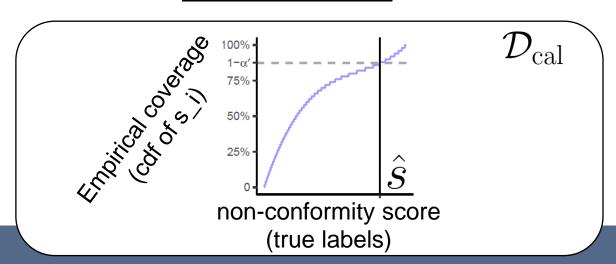
evaluated

- Split conformal prediction (SCP).
- 1. Define a <u>non-conformity score</u>.

$$s_{(y)} = \mathcal{S}(\mathbf{p}, y)$$
 per label



- 2. Compute the cumulative score distribution from the calibration set for true labels.
- 3. Search the 1-alpha quantile in such distribution.



$$s_i = \mathcal{S}(\mathbf{p}_i, y_i)$$

0.61

#### Procedure

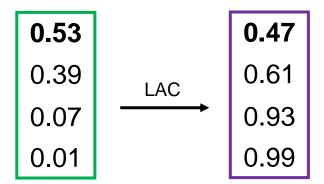
0.61

## (Brief) Introduction to (split) Conformal Prediction

evaluated

- Split conformal prediction (SCP).
- 1. Define a non-conformity score.

$$S(y) = S(\mathbf{p}, y)$$
 per label



- 2. Compute the cumulative score distribution from the calibration set for true labels.
- 3. Search the 1-alpha quantile in such distribution.

$$\mathcal{D}_{\mathrm{cal}}$$

$$s_i = \mathcal{S}(\mathbf{p}_i, y_i)$$

4. Produce output sets for new data points.

$$C(\mathbf{x}) = \{ y \in \mathcal{Y} : S(\mathbf{p}, y) \le \hat{s} \}$$

Split conformal prediction (SCP).

#### Theoretical guarantees

$$\mathcal{P}(Y \in C(\mathbf{x})) \ge 1 - \alpha$$

Generaly, there exist theoretical finite-sample coverage guarantees under the assumption of **i.i.d** or, at least, **exchangable** data distributions for calibration and testing.



### Split conformal prediction (SCP).

#### 1. Efficiency

(we want small sets)

$$\operatorname{Size}(\mathcal{D}) = \frac{1}{I} \sum_{i \in \mathcal{D}} |C(\mathbf{x}_i)|$$

#### 2. Empirical Coverage

(keep the desired error)

$$Cov(\mathcal{D}) = \frac{1}{I} \sum_{i \in \mathcal{D}} \delta[(y_i \subset C(\mathbf{x}_i))]$$

#### 3. Adaptability

(set size should adapt to give coverage to difficult subgroups)

$$\operatorname{Size}(\mathcal{D}) = \frac{1}{I} \sum_{i \in \mathcal{D}} |C(\mathbf{x}_i)| \qquad \operatorname{Cov}(\mathcal{D}) = \frac{1}{I} \sum_{i \in \mathcal{D}} \delta[(y_i \subset C(\mathbf{x}_i))] \qquad \qquad \operatorname{CCV}(\mathcal{D}) = 100 \times \frac{1}{|\mathcal{Y}|} \sum_{k \in \mathcal{V}} \left| \operatorname{Cov}(\mathcal{D}_k) - (1 - \alpha) \right|$$



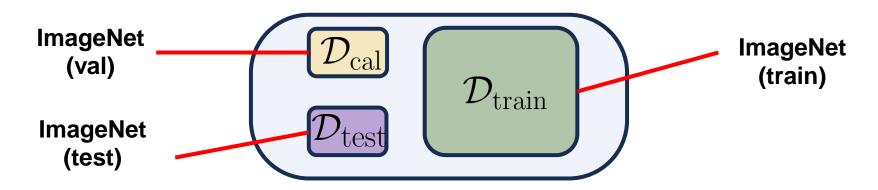
{fox squirrel}



{marmot, fox squirrel, mink, weasel, beaver}

#### Literature in Vision Classifiers

Explored in the standard supervised scenario.



Different adaptive non-conformity scores have been proposed.

$$S_{LAC}(\mathbf{x}, y) = 1 - p_{k=y}$$

[Sadinle et al., Least ambiguous set-valued classifiers with bounded error levels, Jour. American Statistical Association 2019]

$$S_{APS}(\mathbf{x}, y) = \rho_x(y) + p_{k=y} \cdot u$$

[Romano et al., Classification with valid and adaptive coverage., NeurIPS 2020]

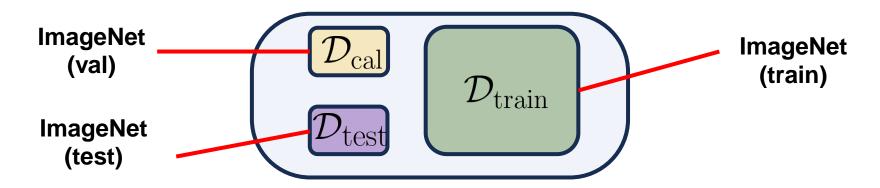
$$S_{\text{RAPS}}(\mathbf{x}, y) = S_{\text{APS}}(\mathbf{x}, y) + \lambda \cdot (o(\mathbf{x}, y) - k_{\text{reg}})^{+}$$

[Angelopoulos et al., Uncertainty Sets for Image Classifiers Using Conformal Prediction, ICLR 2021]

#### Literature in Vision Classifiers

Not yet explored for vision-language (CLIP) models

Explored in the standard supervised scenario.



Different adaptive non-conformity scores have been proposed.

$$S_{LAC}(\mathbf{x}, y) = 1 - p_{k=y}$$

[Sadinle et al., Least ambiguous set-valued classifiers with bounded error levels, Jour. American Statistical Association 2019]

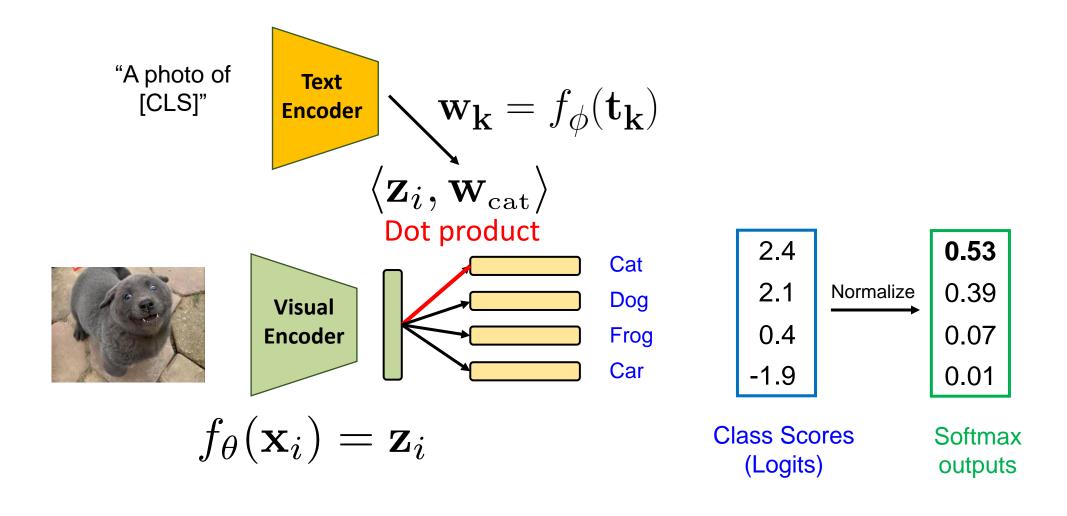
$$S_{APS}(\mathbf{x}, y) = \rho_x(y) + p_{k=y} \cdot u$$

[Romano et al., Classification with valid and adaptive coverage., NeurIPS 2020]

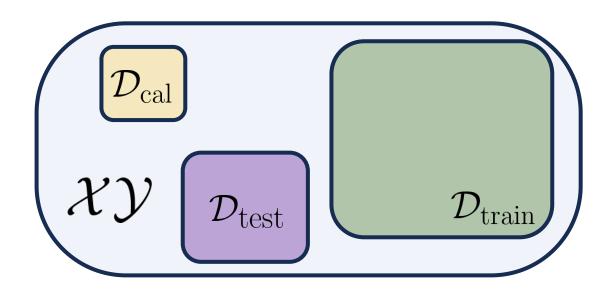
$$S_{\text{RAPS}}(\mathbf{x}, y) = S_{\text{APS}}(\mathbf{x}, y) + \lambda \cdot (o(\mathbf{x}, y) - k_{\text{reg}})^{+}$$

[Angelopoulos et al., Uncertainty Sets for Image Classifiers Using Conformal Prediction, ICLR 2021]

# Vision-Language (zero-shot) Models

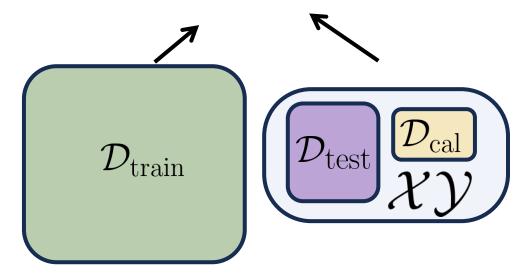


Transfer learning setting.



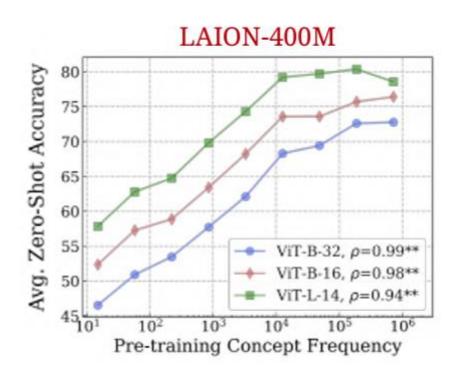
Classical, supervised scenario

Different data distributions, tasks, etc.

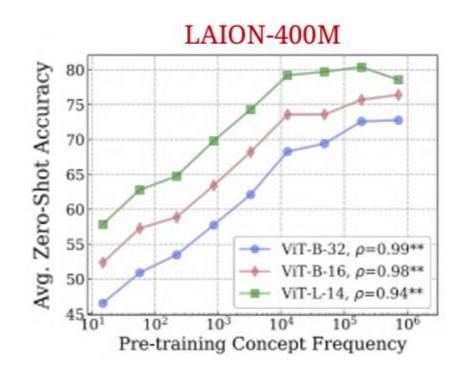


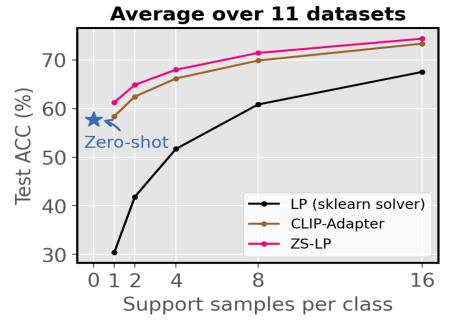
**Foundation models** 

#### Transfer learning setting.



#### Transfer learning setting.

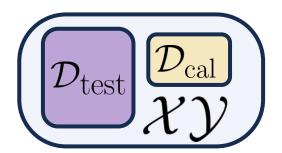




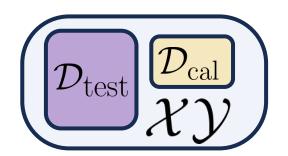
Tackled trough few-shot Linear Probing

Plot 1 from [Udandaro et al., No "Zero-Shot" Without Exponential Data: Pretraining Concept Frequency Determines Multimodal Model Performance, NeurIPS 2024]
Plot 2 from [Silva-Rodríguez et al., A Closer Look at the Few-Shot Adaptation of Large Vision-Language Models, CVPR 2024]

Can we adapt and conformalize using the same data?



Can we adapt and conformalize using the same data?



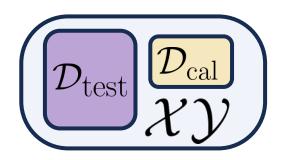
Training a Linear Probe on the logit space

$$\mathcal{D}_{cal} = \{(\mathbf{l}_i, y_i)\}_{i=1}^{N} \quad \mathcal{D}_{test} = \{(\mathbf{l}_i, i)\}_{i=N+1}^{N+M}$$

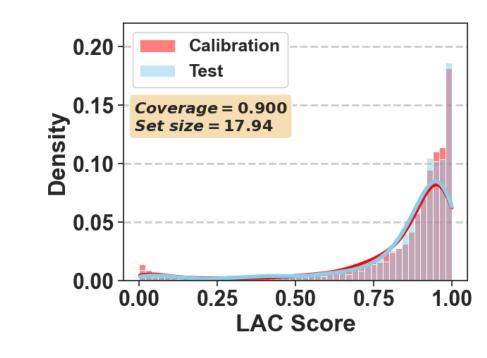
- New class prototypes on the logit projections are defined  $\mathbf{W} \in \mathbb{R}^{K imes K}$  .
- lacktriangle These obtain new class scores based on the **temperature-scaled Euclidean distance**  $l_k' = -rac{ au^{ au}}{2}||\mathbf{l} \mathbf{w}_k||$  .
- Using calibration data, optimize the class prototypes to minimize cross-entropy loss.

$$\min_{\mathbf{W}} -\frac{1}{NK} \sum_{i=1}^{I} \sum_{k=1}^{K} y_{ik} \log p_{ik},$$

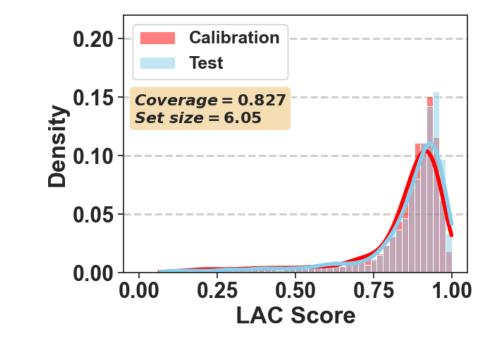
Can we adapt and conformalize using the same data?



Conformal Prediction performance



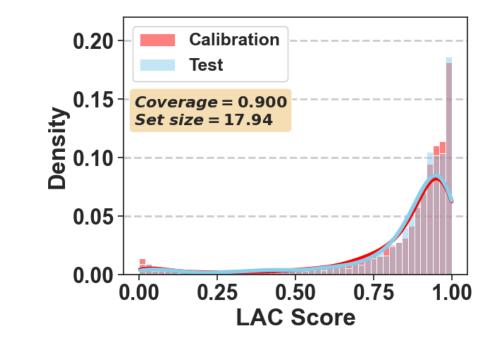
**Zero-shot** 



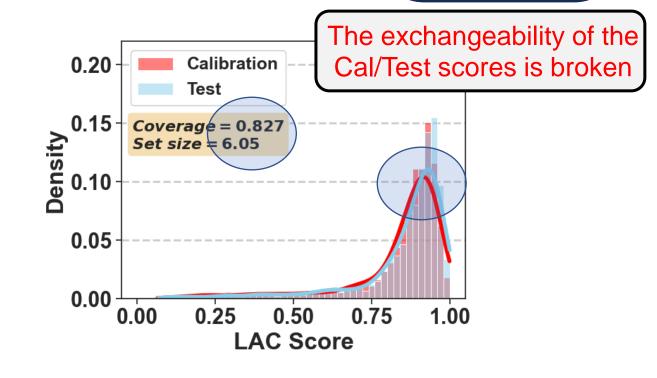
**Adapt + Conformalize in Calibration** 

Can we adapt and conformalize using the same data?

Conformal Prediction performance



**Zero-shot** 



 $D_{
m test}$ 

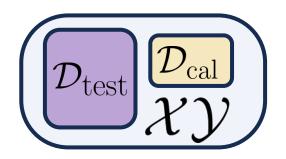
**Adapt + Conformalize in Calibration** 

Transfer Learning for Conformal Prediction



Unsupervised

$$\mathcal{D}_{\text{cal}} = \{(\mathbf{l}_i), \}_{i=1}^N$$



Transfer Learning for Conformal Prediction

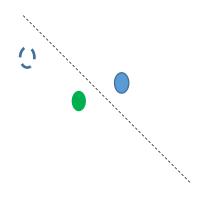


Unsupervised

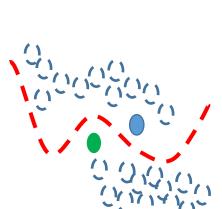
$$\mathcal{D}_{\text{cal}} = \{(\mathbf{l}_i), \}_{i=1}^N$$

2. Jointly modifies Cal/Test score distributions.

**Transductive** 



Inductive
One test sample
at a time



 $u_{
m test}$ 

Transductive
Joint test-time
prediction

Transfer Learning for Conformal Prediction



Unsupervised

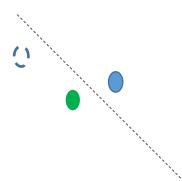
$$\mathcal{D}_{\text{cal}} = \{(\mathbf{l}_i), \}_{i=1}^N$$



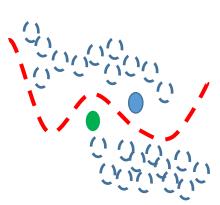
**Transductive** 

Similarity matrix.

$$\mathbf{S} \in \mathbb{R}^{K \times (N+M)} = [l_{ki}]_{k=1,i=1}^{k=K,i=N+M}$$



Inductive
One test sample
at a time



 $D_{
m test}$ 

Transductive
Joint test-time
prediction

#### Conformal Optimal Transport

**Learning goal**: find the joint probability matrix (codes) which maximize the similarity assignment.

$$\max_{\mathbf{Q} \in \mathcal{Q}} tr(\mathbf{Q}^{\top} \mathbf{S})$$

where  $\mathbf{Q} \in \mathbb{R}_+^{K \times (N+M)}$  is the assignment matrix, formed by individual codes for each sample,  $\mathbf{Q}_i$ .

#### Algorithm 1 Conf-OT conformal prediction.

```
set \mathcal{D}_{\text{test}} = \{(l_i)\}_{i=N+1}^{N+M}, non-conformity score function
   S, error level \alpha, entropic weight \tau, iterations T.
   // Block 1. - Transductive transfer learning.
   // Step 1.1. - Init. optimal transport problem.
2: \mathbf{S} \in \mathbb{R}^{K \times (N+M)} = [l_{ki}]_{k=1,i=1}^{k=K,i=N+M} // Sim. matrix.
```

1: **input:** calibration dataset  $\mathcal{D}_{cal} = \{(l_i, y_i)\}_{i=1}^N$ , query

#### Conformal Optimal Transport

**Learning goal**: find the joint probability matrix (codes) which maximize the similarity assignment.

$$\max_{\mathbf{Q} \in \mathcal{Q}} tr(\mathbf{Q}^{\top} \mathbf{S})$$

where  $\mathbf{Q} \in \mathbb{R}_+^{K \times (N+M)}$  is the assignment matrix, formed by individual codes for each sample,  $\mathbf{Q}_i$ .

More concretely,  ${\bf Q}$  is restricted to be an element of the transportation polytope:

$$Q = \{ \mathbf{Q} \mid \mathbf{Q} \mathbf{1}_{(N+M)} = \mathbf{m}, \mathbf{Q}^{\top} \mathbf{1}_K = \mathbf{u}_{(\mathbf{N}+\mathbf{M})} \}$$

#### Algorithm 1 Conf-OT conformal prediction.

```
set \mathcal{D}_{\text{test}} = \{(l_i)\}_{i=N+1}^{N+M}, non-conformity score function
   S, error level \alpha, entropic weight \tau, iterations T.
   // Block 1. - Transductive transfer learning.
   // Step 1.1. - Init. optimal transport problem.
2: \mathbf{S} \in \mathbb{R}^{K \times (N+M)} = [l_{ki}]_{k=1,i=1}^{k=K,i=N+M} // Sim. matrix.
```

1: **input:** calibration dataset  $\mathcal{D}_{cal} = \{(l_i, y_i)\}_{i=1}^N$ , query

### Conformal Optimal Transport

**Learning goal**: find the joint probability matrix (codes) which maximize the similarity assignment.

$$\max_{\mathbf{Q} \in \mathcal{Q}} \ tr(\mathbf{Q}^{\top} \mathbf{S})$$

where  $\mathbf{Q} \in \mathbb{R}_+^{K \times (N+M)}$  is the assignment matrix, formed by individual codes for each sample,  $\mathbf{Q}_i$ .

More concretely, Q is restricted to be an element of the transportation polytope:

$$\mathcal{Q} = \{\mathbf{Q} \mid \mathbf{Q}\mathbf{1}_{(N+M)} \neq \mathbf{m}, \mathbf{Q}^{\top}\mathbf{1}_{K} \neq \mathbf{u}_{(\mathbf{N}+\mathbf{M})}\}$$
 marginals!

#### Algorithm 1 Conf-OT conformal prediction.

```
    input: calibration dataset D<sub>cal</sub> = {(l<sub>i</sub>, y<sub>i</sub>)}<sup>N</sup><sub>i=1</sub>, query set D<sub>test</sub> = {(l<sub>i</sub>)}<sup>N+M</sup><sub>i=N+1</sub>, non-conformity score function S, error level α, entropic weight τ, iterations T.
    // Block 1. - Transductive transfer learning.
    // Step 1.1. - Init. optimal transport problem.
    S ∈ ℝ<sup>K×(N+M)</sup> = [l<sub>ki</sub>]<sup>k=K,i=N+M</sup><sub>k=1,i=1</sub> // Sim. matrix.
```

3: 
$$\mathbf{m} = \frac{1}{N} \sum_{1}^{N} \mathbf{y}_{i}^{\text{obc}}$$
 // Label-marginal.  
4:  $\mathbf{u}_{(\mathbf{N}+\mathbf{M})} = \frac{1}{(N+M)} \mathbf{1}_{(N+M)}$  // Sample marginal.

// Step 1.2. - Compute renormalization vectors.

5: 
$$\mathbf{Q}^{(0)} = (\exp(\mathbf{S}/\tau)/\sum(\exp(\mathbf{S}/\tau))$$
 // Init. codes

6: 
$$\mathbf{c}^{(0)} = \mathbf{1}_{(N+M)}$$
 // Init. renormalization vector

7: **for** 
$$t$$
 **in**  $[1, ..., T]$  **do**

8: 
$$\mathbf{r}^{(t)} = \mathbf{m}/(\mathbf{Q}^{(0)}\mathbf{c}^{(t-1)}) // \text{Eq. (9)}$$

9: 
$$\mathbf{c}^{(t)} = \mathbf{u}_{(\mathbf{N}+\mathbf{M})}/(\mathbf{Q}^{(0)}\mathbf{r}^{(t)})$$
 // Eq. (10).

0: end for

// Step 1.3. - Compute codes.

11: 
$$\mathbf{Q}^* = \operatorname{Diag}(\mathbf{r}^{(T)})\mathbf{Q}^{(0)}\operatorname{Diag}(\mathbf{c}^{(T)})$$
 // Transport codes

12: 
$$\mathbf{Q}^* = \mathbf{Q}^* \mathrm{Diag}(1/\sum_k q_{ki}^*)$$
 // Normalize. // **Block 2.** - Conformal prediction.

13: 
$$\mathcal{D}_{\text{cal}} = \{(q_i^{*\top}, y_i)\}_{i=1}^N, \hat{\mathcal{D}}_{\text{test}} = \{(q_i^{*\top})\}_{i=N+1}^{N+M}$$
// Step 2.1. - 1 -  $\alpha$  non-conformity score quantile

14: 
$$\{s_i\}_{i=1}^N = \{\mathcal{S}(q_i^{*\top}, y_i)\}_{i=1}^N$$
 // Non-conformity scores

15: 
$$\hat{s} \leftarrow \{s_i\}_{i=1}^N$$
,  $\alpha$  // Search threshold - Eq. (3) // Step 2.2. - Create query sets.

16: **return:** 
$$\{\mathcal{C}(q_i^{*})\}_{i=N+1}^M // \text{Eq. } (4)$$

# Conformal Optimal Transport

**Optimization**: We solve the linear program trough the efficient **Sinkhorn algorithm**, which incorporates an **entropic-constraint**.

$$\max_{\mathbf{Q} \in \mathcal{Q}} tr(\mathbf{Q}^{\top} \mathbf{S}) + \varepsilon \mathcal{H}(\mathbf{Q})$$

- input: calibration dataset D<sub>cal</sub> = {(l<sub>i</sub>, y<sub>i</sub>)}<sup>N</sup><sub>i=1</sub>, query set D<sub>test</sub> = {(l<sub>i</sub>)}<sup>N+M</sup><sub>i=N+1</sub>, non-conformity score function S, error level α, entropic weight τ, iterations T.
   // Block 1. Transductive transfer learning.
   // Step 1.1. Init. optimal transport problem.
   S ∈ ℝ<sup>K×(N+M)</sup> = [l<sub>ki</sub>]<sup>k=K,i=N+M</sup><sub>k=1,i=1</sub> // Sim. matrix.
   m = ½ ∑<sub>1</sub><sup>N</sup> y<sub>i</sub><sup>obe</sup> // Label-marginal.
- 4:  $\mathbf{u}_{(\mathbf{N}+\mathbf{M})} = \frac{1}{(N+M)} \mathbf{1}_{(N+M)}$  // Sample marginal.
- // Step 1.2. Compute renormalization vectors. 5:  $\mathbf{Q}^{(0)} = (\exp(\mathbf{S}/\tau) / \sum (\exp(\mathbf{S}/\tau))$  // Init. codes. 6:  $\mathbf{c}^{(0)} = \mathbf{1}_{(N+M)}$  // Init. renormalization vector. 7: **for** t in  $[1, \dots, T]$  **do** 8:  $\mathbf{r}^{(t)} = \mathbf{m}/(\mathbf{Q}^{(0)}\mathbf{c}^{(t-1)})$  // Eq. (9).
  - 9:  $\mathbf{c}^{(t)} = \mathbf{u_{(N+M)}}/(\mathbf{Q^{(0)}r^{(t)}})$  // Eq. (10).
- 10: end for
  // Step 1.3. Compute codes.
  11: Q\* = Diag(r<sup>(T)</sup>)Q<sup>(0)</sup>Diag(c<sup>(T)</sup>) // Transport codes.
- 12:  $\mathbf{Q}^* = \mathbf{Q}^* \mathrm{Diag}(1/\sum_k q_{ki}^*)$  // Normalize.

```
// Block 2. - Conformal prediction.

13: \mathcal{D}_{cal} = \{(q_i^{*\top}, y_i)\}_{i=1}^N, \mathcal{D}_{test} = \{(q_i^{*\top})\}_{i=N+1}^{N+M}
// Step 2.1. - 1 - \alpha non-conformity score quantile.

14: \{s_i\}_{i=1}^N = \{\mathcal{S}(q_i^{*\top}, y_i)\}_{i=1}^N // Non-conformity scores.

15: \hat{s} \leftarrow \{s_i\}_{i=1}^N, \alpha // Search threshold - Eq. (3).
// Step 2.2. - Create query sets.

16: return: \{\mathcal{C}(q_i^{*\top})\}_{i=N+1}^M // Eq. (4).
```

### Conformal Optimal Transport

**Optimization**: We solve the linear program trough the efficient **Sinkhorn algorithm**, which incorporates an **entropic-constraint**.

$$\max_{\mathbf{Q} \in \mathcal{Q}} tr(\mathbf{Q}^{\top} \mathbf{S}) + \varepsilon \mathcal{H}(\mathbf{Q})$$

Now, the soft codes  $\mathbf{Q}^*$  are the solution of the optimization problem, which can be efficiently optimized by computing marginal-renormalization vectors, such that:

$$\mathbf{Q}^* = \mathrm{Diag}(\mathbf{r}^{(t)})\mathbf{Q}^{(0)}\mathrm{Diag}(\mathbf{c}^{(t)})$$

#### Algorithm 1 Conf-OT conformal prediction.

- input: calibration dataset D<sub>cal</sub> = {(l<sub>i</sub>, y<sub>i</sub>)}<sup>N</sup><sub>i=1</sub>, query set D<sub>test</sub> = {(l<sub>i</sub>)}<sup>N+M</sup><sub>i=N+1</sub>, non-conformity score function S, error level α, entropic weight τ, iterations T.
   // Block 1. Transductive transfer learning.
   // Step 1.1. Init. optimal transport problem.
   S ∈ ℝ<sup>K×(N+M)</sup> = [l<sub>ki</sub>]<sup>k=K,i=N+M</sup><sub>k=1,i=1</sub> // Sim. matrix.
- 3:  $\mathbf{m} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{y}_{i}^{\text{obe}} // \text{Label-marginal}.$
- 4:  $\mathbf{u}_{(\mathbf{N}+\mathbf{M})} = \frac{1}{(N+M)} \mathbf{1}_{(N+M)}$  // Sample marginal.

```
// Step 1.2. - Compute renormalization vectors.

5: \mathbf{Q}^{(0)} = (\exp(\mathbf{S}/\tau)/\sum(\exp(\mathbf{S}/\tau)) // Init. codes.

6: \mathbf{c}^{(0)} = \mathbf{1}_{(N+M)} // Init. renormalization vector.
```

7: **for** t in [1, ..., T] **do** 

8:  $\mathbf{r}^{(t)} = \mathbf{m}/(\mathbf{Q}^{(0)}\mathbf{c}^{(t-1)})$  // Eq. (9).

9:  $\mathbf{c}^{(t)} = \mathbf{u}_{(\mathbf{N}+\mathbf{M})}/(\mathbf{Q}^{(0)}\mathbf{r}^{(t)})$  // Eq. (10).

10: end for

// Step 1.3. - Compute codes.

11:  $\mathbf{Q}^* = \operatorname{Diag}(\mathbf{r}^{(T)})\mathbf{Q}^{(0)}\operatorname{Diag}(\mathbf{c}^{(T)})$  // Transport codes.

12:  $\mathbf{Q}^* = \mathbf{Q}^* \mathrm{Diag}(1/\sum_k q_{ki}^*)$  // Normalize.

```
// Block 2. - Conformal prediction.

13: \mathcal{D}_{cal} = \{(q_i^{*\top}, y_i)\}_{i=1}^N, \mathcal{D}_{test} = \{(q_i^{*\top})\}_{i=N+1}^{N+M}
// Step 2.1. - 1 - \alpha non-conformity score quantile.

14: \{s_i\}_{i=1}^N = \{\mathcal{S}(q_i^{*\top}, y_i)\}_{i=1}^N // Non-conformity scores.

15: \hat{s} \leftarrow \{s_i\}_{i=1}^N, \alpha // Search threshold - Eq. (3).
// Step 2.2. - Create query sets.

16: return: \{\mathcal{C}(q_i^{*\top})\}_{i=N+1}^M // Eq. (4).
```

# Conformal Optimal Transport

**Optimization**: We solve the linear program trough the efficient **Sinkhorn algorithm**, which incorporates an **entropic-constraint**.

$$\max_{\mathbf{Q} \in \mathcal{Q}} tr(\mathbf{Q}^{\top} \mathbf{S}) + \varepsilon \mathcal{H}(\mathbf{Q})$$

Norm S as initial Q

Now, the soft codes  $\mathbf{Q}^*$  are the solution of the optimization problem, which can be efficiently optimized by computing marginal-renormalization vectors, such that:

$$\mathbf{Q}^* = \mathrm{Diag}(\mathbf{r}^{(t)})\mathbf{Q}^{(0)}\mathrm{Diag}(\mathbf{c}^{(t)})$$

```
1: input: calibration dataset \mathcal{D}_{\text{cal}} = \{(l_i, y_i)\}_{i=1}^N, query
      set \mathcal{D}_{	ext{test}} = \{(l_i)\}_{i=N+1}^{N+M}, non-conformity score function
      S, error level \alpha, entropic weight \tau, iterations T.
      // Block 1. - Transductive transfer learning.
      // Step 1.1. - Init. optimal transport problem.
 2: \mathbf{S} \in \mathbb{R}^{K \times (N+M)} = [l_{ki}]_{k=1,i=1}^{k=K,i=N+M} // Sim. matrix.
 3: \mathbf{m} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{y}_{i}^{\text{obc}} // \text{Label-marginal.}
 4: \mathbf{u}_{(\mathbf{N}+\mathbf{M})} = \frac{1}{(N+M)} \mathbf{1}_{(N+M)} // Sample marginal.
// Step 1.2. - Compute renormalization vectors.
 5: \mathbf{Q}^{(0)} = (\exp(\mathbf{S}/\tau) / \sum (\exp(\mathbf{S}/\tau)) / / \text{Init. codes.}
 6: \mathbf{c}^{(0)} = \mathbf{1}_{(N+M)} // Init. renormalization vector.
 7: for t in [1, ..., T] do
         \mathbf{r}^{(t)} = \mathbf{m}/(\mathbf{Q}^{(0)}\mathbf{c}^{(t-1)}) // Eq. (9).
           \mathbf{c}^{(t)} = \mathbf{u}_{(\mathbf{N}+\mathbf{M})}/(\mathbf{Q}^{(0)}\mathbf{r}^{(t)}) // Eq. (10).
10: end for
      // Step 1.3. - Compute codes.
11: \mathbf{Q}^* = \operatorname{Diag}(\mathbf{r}^{(T)})\mathbf{Q}^{(0)}\operatorname{Diag}(\mathbf{c}^{(T)}) // Transport codes.
 12: \mathbf{Q}^* = \mathbf{Q}^* \mathrm{Diag}(1/\sum_k q_{ki}^*) // Normalize.
```

```
// Block 2. - Conformal prediction.

13: \mathcal{D}_{cal} = \{(q_i^{*\top}, y_i)\}_{i=1}^N, \mathcal{D}_{test} = \{(q_i^{*\top})\}_{i=N+1}^{N+M}
// Step 2.1. - 1 - \alpha non-conformity score quantile.

14: \{s_i\}_{i=1}^N = \{\mathcal{S}(q_i^{*\top}, y_i)\}_{i=1}^N // Non-conformity scores.

15: \hat{s} \leftarrow \{s_i\}_{i=1}^N, \alpha // Search threshold - Eq. (3).
// Step 2.2. - Create query sets.

16: return: \{\mathcal{C}(q_i^{*\top})\}_{i=N+1}^M // Eq. (4).
```

# Conformal Optimal Transport

**Optimization:** We solve the linear program trough the efficient **Sinkhorn algorithm**, which incorporates an **entropic-constraint**.

$$\max_{\mathbf{Q} \in \mathcal{Q}} tr(\mathbf{Q}^{\top} \mathbf{S}) + \varepsilon \mathcal{H}(\mathbf{Q})$$

Incorporate prior label marginal

Now, the soft codes  $\mathbf{Q}^*$  are the solution of the optimization problem, which can be efficiently optimized by computing marginal-renormalization vectors, such that:

$$\mathbf{Q}^* = \mathrm{Diag}(\mathbf{r}^{(t)})\mathbf{Q}^{(0)}\mathrm{Diag}(\mathbf{c}^{(t)})$$

#### Algorithm 1 Conf-OT conformal prediction.

```
1: input: calibration dataset \mathcal{D}_{cal} = \{(l_i, y_i)\}_{i=1}^N, query set \mathcal{D}_{test} = \{(l_i)\}_{i=N+1}^{N+M}, non-conformity score function \mathcal{S}, error level \alpha, entropic weight \tau, iter // Block 1. - Transductive transfer learn // Step 1.1. - Init. optimal transport process: \mathbf{S} \in \mathbb{R}^{K \times (N+M)} = [l_{ki}]_{k=1,i=1}^{k=K,i=N+M} // 3: \mathbf{m} = \frac{1}{N} \sum_{1}^{N} \mathbf{y}_{i}^{\text{obe}} // Label-marginal.

4: \mathbf{u}_{(\mathbf{N}+\mathbf{M})} = \frac{1}{(N+M)} \mathbf{1}_{(N+M)} // Sample marginal.
```

4:  $\mathbf{u_{(N+M)}} = \frac{1}{(N+M)} \mathbf{1}_{(N+M)} / | \text{Sample marginal.}$ // Step 1.2. - Compute renormalization vectors.

5:  $\mathbf{Q}^{(0)} = (\exp(\mathbf{S}/\tau) / \sum (\exp(\mathbf{S}/\tau)) / | \text{Init. codes.}$ 6:  $\mathbf{c}^{(0)} = \mathbf{1}_{(N+M)} / | \text{Init. renormalization vector.}$ 7:  $\mathbf{for} t$  in  $[1, \dots, T]$  do

8:  $\mathbf{r}^{(t)} = \mathbf{m} / (\mathbf{Q}^{(0)} \mathbf{c}^{(t-1)}) / | \text{Eq. (9).}$ 9:  $\mathbf{c}^{(t)} = \mathbf{u_{(N+M)}} / (\mathbf{Q}^{(0)} \mathbf{r}^{(t)}) / | \text{Eq. (10).}$ 10:  $\mathbf{end}$  for

// Step 1.3. - Compute codes.

11:  $\mathbf{Q}^* = \mathrm{Diag}(\mathbf{r}^{(T)}) \mathbf{Q}^{(0)} \mathrm{Diag}(\mathbf{c}^{(T)}) / | \text{Transport codes.}$ 12:  $\mathbf{Q}^* = \mathbf{Q}^* \mathrm{Diag}(\mathbf{1} / \sum_k q_{ki}^*) / | \text{Normalize.}$ 

```
// Block 2. - Conformal prediction.

3: \mathcal{D}_{cal} = \{(q_i^{*\top}, y_i)\}_{i=1}^{N}, \mathcal{D}_{test} = \{(q_i^{*\top})\}_{i=N+1}^{N+M}

// Step 2.1. - 1 - \alpha non-conformity score quantile.

4: \{s_i\}_{i=1}^{N} = \{\mathcal{S}(q_i^{*\top}, y_i)\}_{i=1}^{N} // Non-conformity scores.

5: \hat{s} \leftarrow \{s_i\}_{i=1}^{N}, \alpha // Search threshold - Eq. (3).

// Step 2.2. - Create query sets.

6: return: \{\mathcal{C}(q_i^{*\top})\}_{i=N+1}^{M} // Eq. (4).
```

# Conformal Optimal Transport

**Optimization:** We solve the linear program trough the efficient **Sinkhorn algorithm**, which incorporates an **entropic-constraint**.

$$\max_{\mathbf{Q} \in \mathcal{Q}} tr(\mathbf{Q}^{\top} \mathbf{S}) + \varepsilon \mathcal{H}(\mathbf{Q})$$

Incorporate prior sample marginal

Now, the soft codes  $\mathbf{Q}^*$  are the solution of the optimization problem, which can be efficiently optimized by computing marginal-renormalization vectors, such that:

$$\mathbf{Q}^* = \mathrm{Diag}(\mathbf{r}^{(t)})\mathbf{Q}^{(0)}\mathrm{Diag}(\mathbf{c}^{(t)})$$

```
1: input: calibration dataset \mathcal{D}_{\mathrm{cal}} = \{(l_i, y_i)\}_{i=1}^N, query
     set \mathcal{D}_{	ext{test}} = \{(l_i)\}_{i=N+1}^{N+M}, non-conformity score function
     S, error level \alpha, entropic weight \tau, it
                                                                  Divide columns by
     // Block 1. - Transductive transfer lea
     // Step 1.1. - Init. optimal transport p
                                                                    observed sample
2: \mathbf{S} \in \mathbb{R}^{K \times (N+M)} = [l_{ki}]_{k=1,i=1}^{k=K,i=N+M}
                                                                             marginal
 3: \mathbf{m} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{y}_{i}^{\text{obc}} // Label-marginal.
 4: \mathbf{u}_{(\mathbf{N}+\mathbf{M})} = \frac{1}{(N+M)} \mathbf{1}_{(N+M)} // Sample marginal
     // Step 1.2. - Compute renormalization ve
 5: \mathbf{Q}^{(0)} = (\exp(\mathbf{S}/\tau) / \sum (\exp(\mathbf{S}/\tau)) / / \text{ Ipid. codes.}
     \mathbf{c}^{(0)} = \mathbf{1}_{(N+M)} // Init. renormalization vector.
 7: for t in [1, ..., T] do
           \mathbf{r}^{(t)} = \mathbf{m}/(\mathbf{Q}^{(0)}\mathbf{c}^{(t-1)}) Eq. (9).
           \mathbf{c}^{(t)} = \mathbf{u_{(N+M)}}/(\mathbf{Q}^{(0)}\mathbf{r}^{(t)}) // Eq. (10).
10: end for
     // Step 1.3. - Compute codes.
11: \mathbf{Q}^* = \operatorname{Diag}(\mathbf{r}^{(T)})\mathbf{Q}^{(0)}\operatorname{Diag}(\mathbf{c}^{(T)}) // Transport codes.
12: \mathbf{Q}^* = \mathbf{Q}^* \mathrm{Diag}(1/\sum_k q_{ki}^*) // Normalize.
```

```
// Block 2. - Conformal prediction.

13: \mathcal{D}_{cal} = \{(q_i^{*\top}, y_i)\}_{i=1}^N, \mathcal{D}_{test} = \{(q_i^{*\top})\}_{i=N+1}^{N+M} // Step 2.1. - 1 - \alpha non-conformity score quantile.

14: \{s_i\}_{i=1}^N = \{\mathcal{S}(q_i^{*\top}, y_i)\}_{i=1}^N // Non-conformity scores.

15: \hat{s} \leftarrow \{s_i\}_{i=1}^N, \alpha // Search threshold - Eq. (3). // Step 2.2. - Create query sets.

16: return: \{\mathcal{C}(q_i^{*\top})\}_{i=N+1}^M // Eq. (4).
```

# Conformal Optimal Transport

**Optimization**: We solve the linear program trough the efficient **Sinkhorn algorithm**, which incorporates an **entropic-constraint**.

$$\max_{\mathbf{Q} \in \mathcal{Q}} tr(\mathbf{Q}^{\top} \mathbf{S}) + \varepsilon \mathcal{H}(\mathbf{Q})$$

Now, the soft codes  $\mathbf{Q}^*$  are the solution of the optimization problem, which can be efficiently optimized by computing marginal-renormalization vectors, such that:

$$\mathbf{Q}^* = \mathrm{Diag}(\mathbf{r}^{(t)})\mathbf{Q}^{(0)}\mathrm{Diag}(\mathbf{c}^{(t)})$$

```
Algorithm 1 Conf-OT conformal prediction.
```

```
    input: calibration dataset D<sub>cal</sub> = {(l<sub>i</sub>, y<sub>i</sub>)}<sup>N</sup><sub>i=1</sub>, query set D<sub>test</sub> = {(l<sub>i</sub>)}<sup>N+M</sup><sub>i=N+1</sub>, non-conformity score function S, error level α, entropic weight τ, iterations T.
    // Block 1. - Transductive transfer learning.
    // Step 1.1. - Init. optimal transport problem.
    S ∈ ℝ<sup>K×(N+M)</sup> = [l<sub>ki</sub>]<sup>k=K,i=N+M</sup><sub>k=1,i=1</sub> // Sim. matrix.
    m = ½ ∑<sup>N</sup><sub>1</sub> y<sup>obe</sup><sub>i</sub> // Label-marginal.
    u<sub>(N+M)</sub> = ½ (N+M) 1 (N+M) // Sample marginal.
    Step 1.2. - Compute renormalization vectors.
```

```
// Step 1.2. - Compute renormalization vectors.

5: \mathbf{Q}^{(0)} = (\exp(\mathbf{S}/\tau) / \sum (\exp(\mathbf{S}/\tau)) / / \text{Init. codes.}

6: \mathbf{c}^{(0)} = \mathbf{1}_{(N+M)} / / \text{Init. renormalization vector.}

7: \mathbf{for} \ t \ \text{in} \ [1, \dots, T] \ \mathbf{do}

8: \mathbf{r}^{(t)} = \mathbf{m} / (\mathbf{Q}^{(0)} \mathbf{c}^{(t-1)}) / / \text{Eq. (9).}

9: \mathbf{c}^{(t)} = \mathbf{u}_{(\mathbf{N}+\mathbf{M})} / (\mathbf{Q}^{(0)} \mathbf{r}^{(t)}) / / \text{Eq. (10).}

10: \mathbf{end} \ \mathbf{for}

// Step 1.3. - Compute codes.

11: \mathbf{Q}^* = \text{Diag}(\mathbf{r}^{(T)}) \mathbf{Q}^{(0)} \text{Diag}(\mathbf{c}^{(T)}) / / \text{Transport codes.}

12: \mathbf{Q}^* = \mathbf{Q}^* \text{Diag}(1 / \sum_k q_{ki}^*) / / \text{Normalize.}
```

// Nock 2. - Conformal prediction.

13:  $\mathcal{D}_{cal} = \{(q \mid Apply \text{ renorm. vectors and sample-wise.}\}$ 14:  $\{s_i\}_{i=1}^N = \{s_i\}_{i=1}^N = \{s_i\}_{i=1}^N = \{c_i\}_{i=1}^N = \{c_i\}_{i=1}^N$ 

# Conformal Optimal Transport

**Conformal prediction:** we follow the standard SCP setting using codes instead of the original probabilities.

$$\mathcal{D}_{\text{cal}} = \{(\mathbf{q}_i, y_i)\}_{i=1}^N$$

$$\mathcal{D}_{\text{test}} = \{(\mathbf{q}_i,)\}_{i=N+1}^{N+M}$$

- 1: input: calibration dataset  $\mathcal{D}_{\mathrm{cal}} = \{(l_i, y_i)\}_{i=1}^N,$  query set  $\mathcal{D}_{ ext{test}} = \{(l_i)\}_{i=N+1}^{N+M}$ , non-conformity score function S, error level  $\alpha$ , entropic weight  $\tau$ , iterations T. // Block 1. - Transductive transfer learning. // Step 1.1. - Init. optimal transport problem. 2:  $\mathbf{S} \in \mathbb{R}^{K \times (N+M)} = [l_{ki}]_{k=1,i=1}^{k=K,i=N+M}$  // Sim. matrix. 3:  $\mathbf{m} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{y}_{i}^{\text{obc}}$  // Label-marginal. 4:  $\mathbf{u}_{(\mathbf{N}+\mathbf{M})} = \frac{1}{(N+M)} \mathbf{1}_{(N+M)}$  // Sample marginal. // Step 1.2. - Compute renormalization vectors. 5:  $\mathbf{Q}^{(0)} = \left(\exp(\mathbf{S}/\tau)/\sum(\exp(\mathbf{S}/\tau)\right)$  // Init. codes. 6:  $\mathbf{c}^{(0)} = \mathbf{1}_{(N+M)}$  // Init. renormalization vector. 7: **for** t in [1, ..., T] **do**  $\mathbf{r}^{(t)} = \mathbf{m}/(\mathbf{Q}^{(0)}\mathbf{c}^{(t-1)})$  // Eq. (9).  $\mathbf{c}^{(t)} = \mathbf{u}_{(\mathbf{N}+\mathbf{M})}/(\mathbf{Q}^{(0)}\mathbf{r}^{(t)})$  // Eq. (10). 10: end for // Step 1.3. - Compute codes. 11:  $\mathbf{Q}^* = \operatorname{Diag}(\mathbf{r}^{(T)})\mathbf{Q}^{(0)}\operatorname{Diag}(\mathbf{c}^{(T)})$  // Transport codes. 12:  $\mathbf{Q}^* = \mathbf{Q}^* \operatorname{Diag}(1/\sum_k q_{ki}^*)$  // Normalize.
- // Block 2. Conformal prediction.

  13:  $\mathcal{D}_{cal} = \{(q_i^{*\top}, y_i)\}_{i=1}^N, \mathcal{D}_{test} = \{(q_i^{*\top})\}_{i=N+1}^{N+M}$ // Step 2.1.  $1 \alpha$  non-conformity score quantile.

  14:  $\{s_i\}_{i=1}^N = \{\mathcal{S}(q_i^{*\top}, y_i)\}_{i=1}^N$  // Non-conformity scores.

  15:  $\hat{s} \leftarrow \{s_i\}_{i=1}^N, \alpha$  // Search threshold Eq. (3).
  // Step 2.2. Create query sets.

  16: **return:**  $\{\mathcal{C}(q_i^{*\top})\}_{i=N+1}^M$  // Eq. (4).

# Enhancing popular non-conformity scores

|              |                             |       | $\alpha = 0.10$                    | <u> </u>                    |   |                    | $\alpha = 0.0$               | <del></del>                 |
|--------------|-----------------------------|-------|------------------------------------|-----------------------------|---|--------------------|------------------------------|-----------------------------|
| Method       |                             |       | $\alpha = 0.10$                    |                             | _ |                    | $\alpha = 0.0$               |                             |
|              | Top-1↑                      | Cov   | Size↓                              | $CCV \downarrow$            |   | Cov.               | Size↓                        | $CCV \downarrow$            |
| CLIP ResNet- | 50                          |       |                                    |                             |   |                    |                              |                             |
| LAC[42]      | -54.7                       | 0.900 | -10.77                             | 9.82                        | _ | $\overline{0.950}$ | 19.22                        | 5.91                        |
| w/ Conf-OT   | <b>57.3</b> <sub>+2.6</sub> | 0.900 | 8.61.2.2                           | <b>9.15</b> <sub>-0.7</sub> |   | 0.951              | <b>15.53</b> <sub>-3.7</sub> | <b>5.61</b> <sub>-0.3</sub> |
| APS [54]     | 54.7                        | 0.900 | 16.35                              | 8.36                        |   | 0.950              | 26.50                        | 5.34                        |
| w/ Conf-OT   | <b>57.3</b> <sub>+2.6</sub> | 0.900 | <b>12.94</b> <sub>-3.4</sub>       | <b>7.64</b> <sub>-0.7</sub> |   | 0.950              | 20.96-5.5                    | <b>5.03</b> <sub>-0.3</sub> |
| RAPS [2]     | 54.7                        | 0.900 | 13.37                              | 8.46                        |   | 0.950              | 22.06                        | 5.44                        |
| w/ Conf-OT   | <b>57.3</b> <sub>+2.6</sub> | 0.900 | <b>11.17</b> <sub>-2.2</sub>       | <b>7.72</b> <sub>-0.7</sub> |   | 0.950              | <b>17.24</b> <sub>-4.8</sub> | <b>5.19</b> <sub>-0.3</sub> |
| CLIP ViT-B/1 | 6                           |       |                                    |                             |   |                    |                              |                             |
| LAC[42]      | -63.8                       | 0.899 | $-\ \overline{5}.5\overline{2}\ -$ | 10.37                       | _ | $\overline{0.950}$ | 10.24                        | $-6.1\overline{4}$          |
| w/ Conf-OT   | <b>66.7</b> <sub>+2.9</sub> | 0.900 | 4.40-1.1                           | <b>9.48</b> <sub>-0.9</sub> |   | 0.949              | <b>7.99</b> <sub>-2.3</sub>  | <b>5.80</b> <sub>-0.3</sub> |
| APS [54]     | 63.8                        | 0.900 | 9.87                               | 8.39                        |   | 0.950              | 16.92                        | 5.51                        |
| w/ Conf-OT   | <b>66.7</b> <sub>+2.9</sub> | 0.899 | <b>7.64</b> <sub>-2.2</sub>        | <b>7.44</b> <sub>-1.0</sub> |   | 0.949              | <b>12.58</b> <sub>-4.3</sub> | <b>5.09</b> <sub>-0.4</sub> |
| RAPS [2]     | 63.8                        | 0.900 | 8.12                               | 8.50                        |   | 0.950              | 12.66                        | 5.52                        |
| w/ Conf-OT   | <b>66.7</b> <sub>+2.9</sub> | 0.900 | <b>6.68</b> <sub>-1.4</sub>        | <b>7.48</b> <sub>-1.0</sub> |   | 0.949              | 10.11-2.6                    | <b>5.16</b> <sub>-0.4</sub> |

■ Enhancing popular non-conformity scores Valid coverage!

|              |                             |       |                              |                                             |                        | 1                            |                                |
|--------------|-----------------------------|-------|------------------------------|---------------------------------------------|------------------------|------------------------------|--------------------------------|
| Method       |                             |       | $\alpha = 0.1$               | 0                                           | $\alpha = 0.05$        |                              |                                |
|              | Top-1↑                      | Cov   | Size↓                        | CCV↓                                        | Cov                    | Size↓                        | CCV↓                           |
| CLIP ResNet- | 50                          |       | 1                            |                                             |                        |                              |                                |
| LAC[42]      | -54.7                       | 0.900 | _ <u>10</u> .77 _            | <sup>-</sup> 9.82 <sup>-</sup> <sup>-</sup> | $0.9\overline{5}0^{-}$ | 19.22                        | - <del>5</del> .91             |
| w/ Conf-OT   | <b>57.3</b> <sub>+2.6</sub> | 0.900 | 8.61.2.2                     | <b>9.15</b> <sub>-0.7</sub>                 | 0.951                  | <b>15.53</b> <sub>-3.7</sub> | <b>5.61</b> <sub>-0.3</sub>    |
| APS [54]     | 54.7                        | 0.900 | 16.35                        | 8.36                                        | 0.950                  | 26.50                        | 5.34                           |
| w/ Conf-OT   | <b>57.3</b> <sub>+2.6</sub> | 0.900 | <b>12.94</b> <sub>-3.4</sub> | <b>7.64</b> <sub>-0.7</sub>                 | 0.950                  | 20.96-5.5                    | <b>5.03</b> <sub>-0.3</sub>    |
| RAPS [2]     | 54.7                        | 0.900 | 13.37                        | 8.46                                        | 0.950                  | 22.06                        | 5.44                           |
| w/ Conf-OT   | <b>57.3</b> <sub>+2.6</sub> | 0.900 | <b>11.17</b> <sub>-2.2</sub> | <b>7.72</b> <sub>-0.7</sub>                 | 0.950                  | <b>17.24</b> <sub>-4.8</sub> | <b>5.19</b> <sub>-0.3</sub>    |
| CLIP ViT-B/1 | 6                           |       |                              |                                             |                        |                              |                                |
| LAC [42]     | -63.8                       | 0.899 | $\overline{5.52}$ -          | 10.37                                       | $0.9\overline{5}0$     | 10.24                        | - <del>6</del> .1 <del>4</del> |
| w/ Conf-OT   | <b>66.7</b> <sub>+2.9</sub> | 0.900 | 4.40 <sub>-1.1</sub>         | <b>9.48</b> <sub>-0.9</sub>                 | 0.949                  | <b>7.99</b> <sub>-2.3</sub>  | <b>5.80</b> <sub>-0.3</sub>    |
| APS [54]     | 63.8                        | 0.900 | 9.87                         | 8.39                                        | 0.950                  | 16.92                        | 5.51                           |
| w/ Conf-OT   | <b>66.7</b> <sub>+2.9</sub> | 0.899 | <b>7.64</b> <sub>-2.2</sub>  | <b>7.44</b> <sub>-1.0</sub>                 | 0.949                  | 12.58-4.3                    | <b>5.09</b> <sub>-0.4</sub>    |
| RAPS [2]     | 63.8                        | 0.900 | 8.12                         | 8.50                                        | 0.950                  | 12.66                        | 5.52                           |
| w/ Conf-OT   | <b>66.7</b> <sub>+2.9</sub> | 0.900 | <b>6.68</b> <sub>-1.4</sub>  | <b>7.48</b> <sub>-1.0</sub>                 | 0.949                  | 10.11.2.6                    | <b>5.16</b> <sub>-0.4</sub>    |
|              |                             |       |                              | •                                           |                        | /                            |                                |

#### Comparison to popular transductive methods

| Method                                                                     |                             |                     |      |       | $\alpha = 0.1$           | .0                          |
|----------------------------------------------------------------------------|-----------------------------|---------------------|------|-------|--------------------------|-----------------------------|
|                                                                            | Top-1↑                      | T                   | GPU  | Cov.  | Size↓                    | CCV↓                        |
| LAC [42]                                                                   | 63.8                        | 0.42                | -    | 0.899 | 5.52                     | 10.37                       |
| $\overline{\text{TIM}}_{\text{KL}(\widehat{\mathbf{m}}  \mathbf{u}_K)}[6]$ | $\overline{64.7}_{+0.9}$    | $-1\overline{1.05}$ | 8.24 | 0.899 | $8.3\overline{0}_{+2.8}$ | $1\overline{0.41}_{+0.0}$   |
| $TIM_{KL(\widehat{\mathbf{m}}  \mathbf{m})}$ [6]                           | $65.0_{+1.2}$               | 11.03               | 8.24 | 0.898 | $7.73_{+2.2}$            | $10.89_{+0.5}$              |
| TransCLIP [74]                                                             | $65.1_{+1.3}$               | 12.00               | 12.2 | 0.892 | $5.76_{\pm0.2}$          | $11.02_{+0.7}$              |
| Conf-OT                                                                    | <b>66.7</b> <sub>+2.9</sub> | 0.61                | -    | 0.900 | 4.40 <sub>-1.1</sub>     | <b>9.48</b> <sub>-0.9</sub> |

#### Comparison to popular transductive methods

| Method                                                                                 |                             |                     | $\alpha = 0.10$ |       |                          |                                      |  |
|----------------------------------------------------------------------------------------|-----------------------------|---------------------|-----------------|-------|--------------------------|--------------------------------------|--|
|                                                                                        | Top-1↑                      | T                   | GPU             | Cov.  | Size↓                    | CCV↓                                 |  |
| LAC [42]                                                                               | 63.8                        | 0.42                | -               | 0.899 | 5.52                     | 10.37                                |  |
| $\overline{\text{TIM}}_{\text{KL}(\widehat{\mathbf{m}}  \mathbf{u}_K)} \overline{[6]}$ | $\overline{64.7}_{+0.9}$    | $-1\overline{1.05}$ | 8.24            | 0.899 | $\overline{8.30}_{+2.8}$ | $1\overline{0}.4\overline{1}_{+0.0}$ |  |
| $TIM_{KL(\widehat{\mathbf{m}}  \mathbf{m})}$ [6]                                       | $65.0_{+1.2}$               | 11.03               | 8.24            | 0.898 | $7.73_{+2.2}$            | $10.89_{+0.5}$                       |  |
| TransCLIP [74]                                                                         | $65.1_{+1.3}$               | 12.00               | 12.2            | 0.892 | $5.76_{\pm0.2}$          | $11.02_{\pm 0.7}$                    |  |
| Conf-OT                                                                                | <b>66.7</b> <sub>+2.9</sub> | 0.61                | -               | 0.900 | 4.40 <sub>-1.1</sub>     | 9.48 <sub>-0.9</sub>                 |  |
|                                                                                        |                             |                     |                 |       |                          |                                      |  |

training-free

no improvement

Better than SoTA even in the discriminative aspect!

#### Evaluation of the data-efficiency

| Method      | Ratio        |        | $\alpha = 0.10$ |       |       |  |
|-------------|--------------|--------|-----------------|-------|-------|--|
|             | Calib - Test | Top-1↑ | Cov.            | Size↓ | CCV↓  |  |
|             | 0.1 - 0.9    | 63.8   | 0.903           | 7.71  | 9.65  |  |
| LAC         | 0.2 - 0.8    | 63.8   | 0.899           | 5.56  | 9.80  |  |
|             | 0.5 - 0.5    | 63.8   | 0.899           | 5.52  | 10.37 |  |
|             | 0.8 - 0.2    | 63.8   | 0.899           | 5.56  | 11.70 |  |
|             | 0.1 - 0.9    | 66.6   | 0.901           | 4.53  | 8.73  |  |
| Conf-OT+LAC | 0.2 - 0.8    | 66.7   | 0.899           | 4.39  | 8.86  |  |
| Coni-O1+LAC | 0.5 - 0.5    | 66.7   | 0.900           | 4.40  | 9.48  |  |
|             | 0.8 - 0.2    | 66.7   | 0.899           | 4.41  | 11.12 |  |

| Method     | M                          |        | $\alpha = 0.10$ |                   |       |  |  |
|------------|----------------------------|--------|-----------------|-------------------|-------|--|--|
|            |                            | Top-1↑ | Cov.            | Size↓             | CCV↓  |  |  |
| LAC        | -                          | 63.8   | 0.899           | 5.52              | 10.37 |  |  |
| w/ Conf-OT | Full                       | 66.7   | 0.900           | 4.40              | 9.48  |  |  |
| w/ Conf-OT | $^{-}3\overline{2}$ $^{-}$ | 66.5   | 0.898           | $-\frac{1}{4.43}$ | 9.66  |  |  |
| w/ Conf-OT | 16                         | 66.5   | 0.898           | 4.43              | 9.67  |  |  |
| w/ Conf-OT | 8                          | 66.6   | 0.898           | 4.42              | 9.67  |  |  |

Robustness to small calibration sets

Robustness to small query inputs

#### Evaluation of the data-efficiency

| Method      | Ratio $\alpha = 0.10$ |        |       |       |       |
|-------------|-----------------------|--------|-------|-------|-------|
|             | Calib - Test          | Top-1↑ | Cov.  | Size↓ | CCV↓  |
|             | 0.1 - 0.9             | 63.8   | 0.903 | 7.71  | 9.65  |
| LAC         | 0.2 - 0.8             | 63.8   | 0.899 | 5.56  | 9.80  |
|             | 0.5 - 0.5             | 63.8   | 0.899 | 5.52  | 10.37 |
|             | 0.8 - 0.2             | 63.8   | 0.899 | 5.56  | 11.70 |
| Conf-OT+LAC | 0.1 - 0.9             | 66.6   | 0.901 | 4.53  | 8.73  |
|             | 0.2 - 0.8             | 66.7   | 0.899 | 4.39  | 8.86  |
|             | 0.5 - 0.5             | 66.7   | 0.900 | 4.40  | 9.48  |
|             | 0.8 - 0.2             | 66.7   | 0.899 | 4.41  | 11.12 |

Robustness to small calibration sets

| Method     | M                |        | $\alpha = 0.10$ |                    |       |  |  |
|------------|------------------|--------|-----------------|--------------------|-------|--|--|
|            |                  | Top-1↑ | Cov.            | Size↓              | CCV↓  |  |  |
| LAC        | -                | 63.8   | 0.899           | 5.52               | 10.37 |  |  |
| w/ Conf-OT | Full             | 66.7   | 0.900           | 4.40               | 9.48  |  |  |
| w/Conf-OT  | $-3\overline{2}$ | 66.5   | 0.898           | $ \overline{4.43}$ | 9.66  |  |  |
| w/ Conf-OT | 16               | 66.5   | 0.898           | 4.43               | 9.67  |  |  |
| w/ Conf-OT | 8                | 66.6   | 0.898           | 4.42               | 9.67  |  |  |

Robustness to small query inputs



Julio Silva-Rodríguez



Ismail Ben Ayed



ÉTS Montréal

Jose Dolz

